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CS 532: 3D Computer Vision 
Lecture 2 

 
Enrique Dunn 
edunn@stevens.edu 

Lieb 310 
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Image Formation 

Based on slides by John Oliensis 
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Lecture Outline 

•  Single View Geometry 
•  2D projective transformations 

– Homographies 
•  Robust estimation 

– RANSAC 
•  Radial distortion 
•  Two-view geometry 

Based on slides by R. Hartley, A. Zisserman, 
M. Pollefeys and S. Seitz 
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Image Formation 

Pinhole camera 

image plane 
(film) 

pinhole Object 
Virtual image 

light ray 
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Projection Equation 

•  2D world è 1D image 

camera center 

“Film” 

f
(focal length) 

Object 

x

z

Image 
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Projection Equation: 3D 

Similar triangles:  
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Perspective Projection: Properties  

•  3D points è image points 
•  3D straight lines è image straight lines 

•  3D Polygons è image polygons 
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Polyhedra Project to Polygons 

(since lines project to lines) 
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Properties: Distant objects are smaller 

B’ C’ 
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Single View Geometry 

Richard Hartley and Andrew Zisserman 
Marc Pollefeys 

Modified by Philippos Mordohai 
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Homogeneous Coordinates 

•  3-D points represented as 4-D vectors  (X Y Z 1)T 
•  Equality defined up to scale    

–  (X Y Z 1)T ~ (WX WY WZ W)T 

•  Useful for perspective projection à makes equations 
linear 

C m M1 M2 
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Pinhole camera model 
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The Pinhole Camera 
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Principal Point Offset 
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Hands On: Image Formation 

•  For a 640 by 480 image with focal length 
equal to 640 pixels, find 3D points that are 
marginally visible at the four borders of the 
image 

•  Increase and decrease the focal length. 
What happens? 
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Camera Rotation and Translation 
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Camera Rotation and Translation 



Intrinsic Parameters 

•  Camera deviates from pinhole  
s: skew 
fx  ≠ fy: different magnification in x and 

y 
(cx cy): optical axis does not pierce 

image plane exactly at the center 

•  Usually: 
  rectangular pixels: 
  square pixels: 
   principal point known: 
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Extrinsic Parameters 
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Projection matrix 

•  Includes coordinate transformation and 
camera intrinsic parameters 
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•  Everything we need to know about a pinhole 
camera  

•  Unambiguous 
•  Can be decomposed into parameters 



Projection matrix 

•  Mapping from 2-D to 3-D is a function of 
internal and external parameters 
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Hands On: Camera Motion 

•  Choose a few 3D points visible to a camera 
at the origin. (f=500, w=500, h=500) 

•  Now, move the camera by 2 units of length 
on the z axis. What happens to the images of 
the points? 

•  Rotate the points by 45 degrees about the z 
axis of the camera and then translate them by 
5 units on the z axis away from the camera. 
What are the new images of the points? 
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Projective Transformations in 2D 

A projectivity is an invertible mapping h from P2 to itself 
such that three points x1,x2,x3 lie on the same line if and 
only if h(x1),h(x2),h(x3) do. 

Definition: 

A mapping h:P2→P2 is a projectivity if and only if there 
exist a non-singular 3x3 matrix H such that for any point 
in P2 reprented by a vector x it is true that h(x)=Hx 

Theorem: 

Definition: Projective transformation 
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Mapping between planes 

central projection may be expressed by x’=Hx 
(application of theorem) 
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Removing Projective Distortion 
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( ) 232221333231' hyhxhhyhxhy ++=++

select four points in a plane with known coordinates 

(linear in hij) 

(2 constraints/point, 8DOF ⇒ 4 points needed) 

Remarks: no calibration at all necessary,  
 better ways to compute (see later) 
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A Hierarchy of Transformations 
Projective linear group 

   Affine group (last row (0,0,1)) 
      Euclidean group (upper left 2x2 orthogonal) 

          Oriented Euclidean group (upper left 2x2 det 1) 

 
Alternatively, characterize transformation in terms of elements 

or quantities that are preserved or invariant 
 

 e.g. Euclidean transformations leave distances unchanged 
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Class I: Isometries 
(iso=same, metric=measure) 
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special cases: pure rotation, pure translation 
3DOF (1 rotation, 2 translation)  

Invariants: length, angle, area 
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Class II: Similarities 
(isometry + scale) 
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also know as equi-form (shape preserving) 
metric structure = structure up to similarity (in literature) 

4DOF (1 scale, 1 rotation, 2 translation)  

Invariants: ratios of length, angle, ratios of areas, 
      parallel lines 
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Class III: Affine Transformations 
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Class VI: Projective Transformations 
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8DOF (2 scale, 2 rotation, 2 translation, 2 line at infinity)  

Invariants: cross-ratio of four points on a line 
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Overview of Transformations 
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combinations of vectors 
(centroids).  
The line at infinity l∞ 
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The circular points I,J 
 

lengths, areas. 
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Homework 1 

Warp the basketball 
court from this image to 
a new image so that it 
appears as if the new 
image was taken from 
directly above 
 

 

What are we missing? 
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Image Warping 

Slides by Steve Seitz 
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Image Transformations 
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Parametric (Global) Warping 

•  Transformation T is a coordinate-changing machine: 
p’ = T(p) 

•  What does it mean that T is global? 
–  It is the same for any point p 
–  It can be described by just a few numbers (parameters) 

•  T is represented as a matrix (see prev. slides): 
p’ = M*p 
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Image Warping 

Given a coordinate transform (x’,y’) = h(x,y) 
and a source image f(x,y), how do we 
compute a transformed image g(x’,y’) = 
f(T(x,y))? 
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Forward Warping 

Send each pixel f(x,y) to its corresponding 
location (x’,y’) = T(x,y) in the second image 

 

Q: what if the pixel lands “between” two pixels? 
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Forward Warping 

Send each pixel f(x,y) to its corresponding location 
(x’,y’) = T(x,y) in the second image 
 
Q: what if the pixel lands “between” two pixels? 
A: Distribute color among neighboring pixels 
(splatting) 
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Inverse Warping 

•  Get each pixel g(x’,y’) from its corresponding 
location (x,y) = T-1(x’,y’) in the first image 

•  Q: what if pixel comes from “between” two 
pixels? 
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Inverse Warping 

•  Get each pixel g(x’,y’) from its corresponding location 
(x,y) = T-1(x’,y’) in the first image 

•  Q: what if pixel comes from “between” two pixels? 
•  A: interpolate color value from neighbors  

–  Bilinear interpolation typically used 
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Bilinear Interpolation 
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Forward vs. Inverse Warping 

•  Which is better? 

•  ...  
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Parameter Estimation 

Slides by R. Hartley, A. Zisserman 
and M. Pollefeys 
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Homography:  
Number of Measurements Required 

•  At least as many independent equations as 
degrees of freedom required 

•  Example:  Hxx'=
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Approximate solutions 

•  Minimal solution 
 4 points yield an exact solution for H 

•  More points 
– No exact solution, because 

measurements are inexact (“noise”) 
– Search for “best” according to some cost 

function 
– Algebraic or geometric/statistical cost 
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Direct Linear Transformation (DLT) 
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Direct Linear Transformation (DLT) 

Equations are linear in h 
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Only 2 of 3 are linearly independent  
 (indeed, 2 eq/pt) 

49 



Direct Linear Transformation (DLT) 
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•  Holds for any homogeneous 
representation, e.g. (xi’,yi’,1) 

50 



Direct Linear Transformation (DLT) 

•  Solving for H 0Ah =

0h
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1-D null-space yields solution of interest, 
pick for example the one with 1h =
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Direct Linear Transformation (DLT) 

•  Over-determined solution 

No exact solution because of inexact measurement 
i.e. “noise” 
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Find approximate solution 
-  Additional constraint needed to avoid 0, e.g. 

-                not possible, so minimize  

1h =
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DLT Algorithm 

Objective 
 Given n≥4 2D to 2D point correspondences {xi↔xi’}, 
determine the 2D homography matrix H such that xi’=Hxi 

Algorithm 
(i)  For each correspondence xi ↔xi’ compute Ai. Usually 

only two first rows needed. 

(ii)  Assemble n 2x9 matrices Ai into a single 2nx9 matrix A 
(iii)  Obtain SVD of A. Solution for h is last column of V 
(iv)  Determine H from h 
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Inhomogeneous solution 
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Since h can only be computed up to scale, 
pick hj=1, e.g. h9=1, and solve for 8-vector h~

Solve using Gaussian elimination (4 points) or 
using linear least-squares (more than 4 points) 
However, if h9=0 this approach fails  
Also poor results if h9 close to zero 
Therefore, not recommended 
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Normalizing Transformations 

•  Since DLT is not invariant to transformations, 
what is a good choice of coordinates? 
e.g. 
–  Translate centroid to origin 

–  Scale to a       average distance to the origin 
–  Independently on both images 
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Importance of Normalization 
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orders of magnitude difference! 
 

Monte Carlo simulation  
for identity computation based on 5 points 

(not normalized ↔ normalized) 
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Normalized DLT Algorithm 

Objective 
 Given n≥4 2D to 2D point correspondences {xi↔xi’}, 
determine the 2D homography matrix H such that xi’=Hxi 

Algorithm 
(i)  Normalize points   
(ii)  Apply DLT algorithm to  
(iii)  Denormalize solution 

,x~x~ ii ʹ′↔
inormiinormi xTx~,xTx~ ʹ′ʹ′=ʹ′=

norm
-1
norm TH~TH ʹ′=
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RANSAC 

Slides by R. Hartley, A. Zisserman 
and M. Pollefeys 
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Robust Estimation 

•  What if set of matches contains gross outliers? 
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RANSAC 
Objective 

 Robust fit of model to data set S which contains outliers 
Algorithm 
(i)  Randomly select a sample of s data points from S and 

instantiate the model from this subset. 
(ii)  Determine the set of data points Si which are within a 

distance threshold t of the model.  The set Si is the 
consensus set of samples and defines  the inliers of S. 

(iii)  If the subset of Si is greater than some threshold T, re-
estimate the model using all the points in Si and terminate 

(iv)  If the size of Si is less than T, select a new subset and 
repeat the above. 

(v)  After N trials the largest consensus set Si is selected, and 
the model is re-estimated using all the points in the 
subset Si 
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How Many Samples? 

 Choose N so that, with probability p, at least one random 
sample is free from outliers. e.g. p=0.99 

( ) ( )( )sepN −−−= 11log/1log

( )( ) pe
Ns −=−− 111

proportion of outliers e 
s 5% 10% 20% 25% 30% 40% 50% 
2 2 3 5 6 7 11 17 
3 3 4 7 9 11 19 35 
4 3 5 9 13 17 34 72 
5 4 6 12 17 26 57 146 
6 4 7 16 24 37 97 293 
7 4 8 20 33 54 163 588 
8 5 9 26 44 78 272 1177 
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Acceptable Consensus Set 

•  Typically, terminate when inlier ratio reaches expected 
ratio of inliers 

( )neT −= 1
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Adaptively Determining the Number of Samples 

 e is often unknown a priori, so pick worst case, e.g. 50%, 
and adapt if more inliers are found, e.g. 80% would yield 
e=0.2  

 
–  N=∞, sample_count =0 

–  While N >sample_count repeat 
•  Choose a sample and count the number of inliers 

•  Set e=1-(number of inliers)/(total number of points) 

•  Recompute N from e 
•  Increment the sample_count by 1 

–  Terminate 
( ) ( )( )( )sepN −−−= 11log/1log
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Other robust algorithms 

•  RANSAC maximizes number of inliers 

•  LMedS minimizes median error 

•  Not recommended: case deletion, iterative 
least-squares, etc. 
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Automatic Computation of H 

Objective 
 Compute homography between two images 

Algorithm 
(i)   Interest points: Compute interest points in each image 
(ii)   Putative correspondences: Compute a set of interest 

point matches based on some similarity measure 
(iii)   RANSAC robust estimation: Repeat for N samples 

 (a) Select 4 correspondences and compute H 
 (b) Calculate the distance d⊥ for each putative match 
 (c) Compute the number of inliers consistent with H (d⊥<t) 
 Choose H with most inliers  

(iv)  Optimal estimation: re-estimate H from all inliers by 
minimizing ML cost function with Levenberg-Marquardt 

(v)  Guided matching: Determine more matches using 
prediction by computed H 

Optionally iterate last two steps until convergence 65 



Determine Putative Correspondences 

•  Compare interest points 
Similarity measure: 

–  SAD, SSD, ZNCC in small neighborhood 

•  If motion is limited, only consider interest points with 
similar coordinates 
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Example: robust computation 

Interest points 
(500/image) 
(640x480) 
 

Putative correspondences (268) 
(Best match,SSD<20,±320) 
Outliers (117) 
(t=1.25 pixel; 43 iterations) 

Inliers (151) 
 
Final inliers (262) 

#in 1-e adapt. N 

6 2% 20M 
10 3% 2.5M 
44 16% 6,922 
58 21% 2,291 
73 26% 911 

151 56% 43 
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Radial Distortion and 
Undistortion 

Slides by R. Hartley, A. Zisserman 
and M. Pollefeys 
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short and long focal length 

Radial Distortion 
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70 
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Correction of distortion 

Choice of the distortion function and center 

Computing the parameters of the distortion function 
(i)  Minimize with additional unknowns 
(ii)  Straighten lines 
(iii)  … 
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Typical Undistortion Model 
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Why Undistort? 



Two-View Geometry 

Slides by R. Hartley, A. Zisserman and M. Pollefeys 
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(i)   Correspondence geometry: Given an image point x in the first 
image, how does this constrain the position of the corresponding 
point x’ in the second image? 

(ii)  Camera geometry (motion): Given a set of corresponding image 
points {xi ↔x’i}, i=1,…,n, what are the cameras P and P’ for the 
two views? 

(iii)  Scene geometry (structure): Given corresponding image points 
xi ↔x’i  and cameras P, P’, what is the position of (their pre-
image) X in space? 

Three questions: 
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C, C’, x, x’ and X are coplanar 

The Epipolar Geometry 
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What if only C,C’,x are known? 

The Epipolar Geometry 
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All points on π project on l and l’ 

78 

The Epipolar Geometry 



Family of planes π and lines l and l’  
Intersection in e and e’ 
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The Epipolar Geometry 



epipoles e, e’ 
= intersection of baseline with image plane  
= projection of projection center in other image 
= vanishing point of camera motion direction 

an epipolar plane = plane containing baseline (1-D family) 

an epipolar line = intersection of epipolar plane with image 
 (always come in corresponding pairs) 
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The Epipolar Geometry 



Example: Converging Cameras 
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(simple for stereo → rectification) 

Example: Motion Parallel to Image Plane 

82 



e 

e’ 

Example: Forward Motion 
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The Fundamental Matrix F 

algebraic representation of epipolar geometry  

l'x!

 we will see that mapping is a (singular) correlation 
(i.e. projective mapping from points to lines) 
represented by the fundamental matrix F 
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correspondence condition 

0Fxx'T =

 The fundamental matrix satisfies the condition that for 
any pair of corresponding points x↔x’ in the two 
images 

( )0l'x'T =
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The Fundamental Matrix F 



( ) λCxPλX += + ( )IPP =+

[ ] +
×= PP'e'F

xPP'CP'l +×=

(note: doesn’t work for C=C’ ⇒ F=0) 

xP+
( )λX

86 

The Fundamental Matrix F 



F is the unique 3x3 rank 2 matrix that 
satisfies x’TFx=0 for all x↔x’  

(i)   Transpose: if F is fundamental matrix for (P,P’), then FT is 
fundamental matrix for (P’,P) 

(ii)   Epipolar lines: l’=Fx & l=FTx’ 
(iii)   Epipoles: on all epipolar lines, thus e’TFx=0, ∀x ⇒e’TF=0, 

similarly Fe=0 
(iv)   F has 7 d.o.f. , i.e. 3x3-1(homogeneous)-1(rank2) 
(v)   F is a correlation, projective mapping from a point x to a line 

l’=Fx (not a proper correlation, i.e. not invertible) 
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The Fundamental Matrix F 



Two View Geometry Computation: Linear Algorithm 

0Fxx'T =

separate known from unknown 

0'''''' 333231232221131211 =++++++++ fyfxffyyfyxfyfxyfxxfx

[ ][ ] 0,,,,,,,,1,,,',',',',',' T
333231232221131211 =fffffffffyxyyyxyxyxxx

(data) (unknowns) 

(linear) 

0Af =

0f
1''''''

1'''''' 111111111111
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

nnnnnnnnnnnn yxyyyxyxyxxx

yxyyyxyxyxxx
!!!!!!!!!

For every match (m,m´): 
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Benefits from having F 

•  Given a pixel in one image, the 
corresponding pixel has to lie on epipolar 
line 

•  Search space reduced from 2-D to 1-D 
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simplify stereo matching  
by warping the images 

Apply projective transformation so that epipolar lines 
correspond to horizontal scanlines 

e 

e 

map epipole e to (1,0,0) 

try to minimize image distortion 

problem when epipole in (or close to) the image 

He
0
0
1
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Image Pair Rectification 
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Planar Rectification 

Bring two views  
to standard stereo setup 
(moves epipole to ∞) 
(not possible when in/close to image) 

(standard approach) 
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