a | (.| |ab,—ba,
a, |x|b, |=|ab, —b,a,
b,) \ab,—b.a,
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Image Formation

Based on slides by John Oliensis



Lecture Outline

« Single View Geometry

» 2D projective transformations
— Homographies

» Robust estimation
— RANSAC

« Radial distortion

* Two-view geometry

Based on slides by R. Hartley, A. Zisserman,
M. Pollefeys and S. Seitz



Image Formation

Pinhole camera

image plane
(film)

N\
\\\ﬂ/\

pinhole Object

Virtual image



Projection Equation

« 2D world = 1D image

Object
Ty




Projection Equation: 3D

(X.Y,Z)
? O
X | _4 Y

X X .

; -2
f g /
Similar triangles: =2 S — (x J’) = i(X,Y)
' X Y Z Z




Perspective Projection: Properties

« 3D points = image points
« 3D straight lines =» image straight lines

~

P
« 3D Polygons = image polygons




Polyhedra Project to Polygons

(since lines project to lines)

=y




Properties: Distant objects are smaller

~
~
Hn -~
~

10



Single View Geometry

Richard Hartley and Andrew Zisserman
Marc Pollefeys

Modified by Philippos Mordohai

11



Homogeneous Coordinates

« 3-D points represented as 4-D vectors (XY Z 1)T
« Equality defined up to scale
— (XY Z 1T~ (WXWY WZW)T

« Useful for perspective projection - makes equations
linear




Pinhole camera model

‘ Y
;-/.'
7
X ,/""--‘ ___n-. X
/// '___‘7___—*’
x
o /.( X
- //
C & ‘ /b" \ > 7
\ / - P /’/ AN
g yd ~ principal axis

camera s
centre - image plane

e

(X,Y,Z)T —(X/Z,1Y/Z2)

[ X ] (X
[ X\ 0
YH]]?; ! f 0 !
7 - 7
Z 1 0
1) A1

linear projection in homogeneous coordinates!



The Pinhole Camera

‘Y

_eX l‘

- Z C o .1
» SR T
N principal £
ge plane




Principal Point Offset

Yo
v A

e l

(XY, 2) > (X/Z+p, fY/Z+p,)

T .. :
(P X2 py) principal point

[ X)) _ X
v (X+2Zp.\ [f p. 0 .
7 = fY+Zpy = f P, 0 5

. <) 1 0

\1/ i '\1/



Principal Point Offset

T e A= K[I ‘ O]Xcam

(X
/]()(‘l'pr\ f px O v
Y+2zp =1/ p, 0O
R | O'\l/
f px_
librati :
K = f P, calibration matrix
1




Hands On: Image Formation

* For a 640 by 480 image with focal length
equal to 640 pixels, find 3D points that are
marginally visible at the four borders of the

Image - (X
J (X+2Zp.\ [f p. Oy
fY+2p, |= f p, 0 ~
\ Z 0
L -\1
* Increase and decrease the focal length.

What happens?



Camera Rotation and Translation

'R -RC]|Y| [R =RC]
o 1 1zl o 1

<
I
I
<




Camera Rotation and Translation




Intrinsic Parameters

S S

y

Camera deviates from pinhole

S: skew

C

C

X

y

or

f. # 1. different magnification in x and

Y

(c, c,): optical axis does not pierce

image plane exactly at the center

Usually:
rectangular pixels:
square pixels:
principal point known:

s =0

‘af  fcos(s) u,]
oo,

Yot X,




Extrinsic Parameters

Yeam
C ( )
S //-/-
O |
\.
X

Xeam

R(3X3) t(3X1)
O(1X3) 1

Scene motion M =

_RT(3x3) -(RTt)3X1_
i 0(1X3) |

Camera motion M' —




Projection matrix

* |ncludes coordinate transformation and
camera intrinsic parameters

X] [Py Pz Pz Py
MYy P21 Py Pz Poy
_ 1 | |Pst Ps2 Pz Pas

-
Y
Z
1

* Everything we need to know about a pinhole
camera

* Unambiguous

* Can be decomposed into parameters

22



Projection matrix

* Mapping from 2-D to 3-D is a function of
internal and external parameters

_ _ X
X f. s c,
[T T]Y
AMyl=10 f, ¢ |[R |-R? p
| 0O 0 1 |

Ax = K[RT | —RTt]X
A = PX



Hands On: Camera Motion

* Choose a few 3D points visible to a camera
at the origin. (=500, w=500, h=500)

* Now, move the camera by 2 units of length
on the z axis. What happens to the images of
the points?

* Rotate the points by 45 degrees about the z
axis of the camera and then translate them by
5 units on the z axis away from the camera.
What are the new images of the points?



Projective Transformations in 2D

Definition:

A projectivity is an invertible mapping h from P?2 to itself
such that three points x,,x,,x; lie on the same line if and
only if A(x,),A(x,),h(x;) do.

Theorem:

A mapping /:P>—P? is a projectivity if and only if there
exist a non-singular 3x3 matrix H such that for any point
in P2 reprented by a vector x it is true that 4(x)=Hx

Definition: Projective transformation

X', (o by, s X
Xy l=1hy hy byl x, or x'=Hx
X'y _h31 hy s 1\ X3 8DOF

projectivity=collineation=projective transformation=nomography



Mapping between planes

—— R
|
'|| ® X
. e / \
x — |
I 'll
0/,.—4 - —l:l- --------- > o
1|
v P // \ TT
) x', .
//
Vg / g \/x
ul///

central projection may be expressed by x'=Hx
(application of theorem)



Removing Projective Distortion

i;‘j }%]] | f (1f ffjj.{;'fjj:';ni‘ ]
HEZIE 1 1 11 A0 ol

4!‘ o e AR

select four points in a plane with known coordinates
'= X _ hyx+h,y+h, y
X'y X+ hy,y+h X'y hyx+hy,y+ b

X' (h31x + Iy, Y + hy ) =X +h,y + s
y'(h31x +hy,y + s ) =Ny X+ Ny, Y + hys

!
_Xo _ hy X +hy,y+h,,

'

(linearin 4,)
(2 constraints/point, 8DOF = 4 points needed)

Remarks: no calibration at all necessary,

better ways to compute (see later) 7



A Hierarchy of Transformations

Projective linear group
Affine group (last row (0,0,1))
Euclidean group (upper left 2x2 orthogonal)
Oriented Euclidean group (upper left 2x2 det 1)

Alternatively, characterize transformation in terms of elements
or quantities that are preserved or invariant

e.g. Euclidean transformations leave distances unchanged

,){ >{|f‘
\&

%3
o\ >
‘;:45 &

A

/\\ \\\\
%N

&
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Class |: Isometries

(iso=same, metric=measure)

x"\ [ecos@ —-snO ¢ |(x
y'|=|€sin@ cosO ¢t ||y £==]
1 0 0 1[{1

orientation preserving: ¢ =1
orientation reversing: & =-1

R t
X' HEX:[OT JX R'R=1

3DOF (1 rotation, 2 translation)
special cases: pure rotation, pure translation

Invariants: length, angle, area



Class ll: Similarities

] _ _ (isometry + scale)
scos —-ssmf@ ¢t |[/x

X

y

X
y'|=|ssm6f scosf t ||y
1 0 0 111

' sR t
X=st= OT 1 X RTR=I

4DOF (1 scale, 1 rotation, 2 translation)

also know as equi-form (shape preserving)
metric structure = structure up to similarity (in literature)

Invariants: ratios of length, angle, ratios of areas,
parallel lines



Class lll; Affine Transformations

X' a, a, I,
Vi=lay, ay t s 1Y
1 0 0 1(i1 /\ ﬂ
At &< o o
xX=H, x = X o |
A [ OT 1 ] rotation deformation

A=R(O)R(-g)DR(p) D= [ﬂi : ]

0 4

6DOF (2 scale, 2 rotation, 2 translation)
non-isotropic scaling! (2DOF: scale ratio and orientation)

Invariants: parallel lines, ratios of parallel lengths,
ratios of areas



Class VI: Projective Transformations

X'=HPX=[A WX V=(V1>V2)T

8DOF (2 scale, 2 rotation, 2 translation, 2 line at infinity)
Action is non-homogeneous over the plane

Invariants: cross-ratio of four points on a line
(ratio of ratios)



Overview of Transformations

hll h12 h13 Concurrency, collinearity,
Projective h h A order of contact (intersection,
21 22 23 tangency, inflection, etc.),
8dof
cross ratio
_h31 hy s |
- £ Parallellism, ratio of areas,
_ dy  ap X ratio of lengths on parallel
Affine a a ¢ lines (e.g midpoints), linear
6dof 21 22 %y combinations of vectors
0 0 1 (centroids).
i - The line at infinity I,

(sr,  sr, t. ]

T H 12 X Ratios of lengths, angles.
Similarity S7 §7 ¢ The circular points 1,J
4dof 21 2 7y

0 0 1
_ o ha L
Euclidean y lengths, areas.
3dof o T 4
0O 0 1




Homework 1

Warp the basketball
court from this image to
a new image so that it
appears as if the new
image was taken from
directly above

What are we missing?

34



Image Warping

Slides by Steve Seitz



Image Transformations

Image filtering: change range of image
a(x) = T(f(x))

— [

Image warping: change domain of image
g(x) =1(1(x))

— T —

36



Parametric (Global) Warping

« Transformation T is a coordinate-changing machine:

p = T(p)
 What does it mean that T is global?

— It is the same for any point p
— It can be described by just a few numbers (parameters)

* T is represented as a matrix (see prev. slides):
p*=M"p

37



Image Warping

Given a coordinate transform (x',y’) = h(x,y)
and a source image f(x,y), how do we
compute a transformed image g(x’,y’) =
f(T(x,y))?

38



Forward Warping

Send each pixel f(x,y) to its corresponding
location (x',y’) = T(x,y) in the second image

Q: what if the pixel lands “between” two pixels?

39



Forward Warping

# T(x.y) :
y f_: y L
X

f(x.y) gx’y)

Send each pixel f(x,y) to its corresponding location
(x,y’) = T(x,y) in the second image

Q: what if the pixel lands “between” two pixels?

A: Distribute color among neighboring pixels
(splatting)



Inverse Warping

» Get each pixel g( Ly’) from its corresponding
location (X,y) = (x’,y) in the first image

« Q: what if pixel comes from “between” two
pixels?

41



Inverse Warping

. T (x.y)
yL y #

X

XJ'

f(x.y) gx’y)

« Get each pixel g(x’,y’) from its corresponding location
(x,y) = T-1(x’,y’) in the first image

* Q: what if pixel comes from “between” two pixels?

* A interpolate color value from neighbors
— Bilinear interpolation typically used



Bilinear Interpolation

(4,7 +1) (i+1.7+1)

(2, y)

i a
b

(4,7) (i+1,7)

fle.y) = (1 —a)(1=0) flij]
+a(l1-0)  fli+1,j]
+ab fli+1,7+1]
+(1—a)p  [fli,5 4+ 1]




Forward vs. Inverse Warping

 Which is better?



Parameter Estimation

Slides by R. Hartley, A. Zisserman
and M. Pollefeys



Homography:
Number of Measurements Required

« At least as many independent equations as
degrees of freedom required

e E le:

Xamp X'= HX
X o by, s [x
A y, Ry, hy hys ||y
_ 1 _ _h31 hs, h33_ _1_

2 independent equations / point

>
8 degrees of freedom 4x2>8



Approximate solutions

* Minimal solution
4 points yield an exact solution for H

* More points

— No exact solution, because
measurements are inexact (“noise”)

— Search for “best” according to some cost
function

— Algebraic or geometric/statistical cost



Direct Linear Transformation (DLT)

(h''x, )
/ / I
— . . = T
A HXi X XHXz 0 X, = (x;,ylf,wl.')T Hx. =|h® x,
T T h*'x
3 1h 2 i
(yh* x, —wh? x| \
T AT
x;xHx, =| wh' x, —xh’ x,
2T 1T
xh* x; - yh Xz’/
T ' T ' T 1
0 -wx;  yx; |(h)
T T T || 1.2
WX, 0 -xX,; ||h®[=0
T ', T T 3
- VX, XX, 0 b




Direct Linear Transformation (DLT)

Equations are linear in h
Ah=0

Only 2 of 3 are linearly independent
(indeed, 2 eqg/pt)

T T ' T 1711
0 -wx, yx; |(h)
T T T 112
WX, 0 -xX; [|h"|=0
1T 1T T 13
- VX, XX, 0 b

I Al I'A 2 I'A 3
XA+ VA +wA; =0

l



Direct Linear Transformation (DLT)

i T 1T 1T '/:11\
0 —WX;, VX | w2
T T 1|l B =0
Wik, 0 XX ] w3
41 1N
\" /

(only drop third row if w;"#0)

Holds for any homogeneous
representation, e.g. (x;,y;,1)



Direct Linear Transformation (DLT)

« SolvingforH Ah=0

2

s

S~

A,

h=0  Size of A is 8x9, but rank 8

Trivial solution is h=04" is not interesting

1-D null-space yields solution of interest
pick for example the one with HhH =]

~



Direct Linear Transformation (DLT)

. . A,
« Over-determined solution AI
Zlh=0
An
No exact solution because of inexact measurement

l.e. “noise”

Find approximate solution
Additional constraint needed to avoid 0, e.g. HhH =
Ah = 0 not possible, so minimize HAhH



DLT Algorithm

Objective

Given n24 2D to 2D point correspondences {X;<Xx;},
determine the 2D homography matrix H such that x,’=Hx;

Algorithm

For each correspondence x; «>x;’ compute A;. Usually
only two first rows needed.

Assemble n 2x9 matrices A, into a single 21x9 matrix A
Obtain SVD of A. Solution for h is last column of V
Determine H from h




Inhomogeneous solution

Since h can only be computed up to scale, _
pick h;=1, e.g. hy=1, and solve for 8-vector h

H i (_ Wi)/'i )
W.X.

11

[O 0 0 -xw,' —yw' —-ww' xy' py'

! ! ! ! !
XW, YW, WW, 0 0 0 — XX = VX

Solve using Gaussian elimination (4 points) or
using linear least-squares (more than 4 points)

However, if hg=0 this approach fails
Also poor results if hg close to zero
Therefore, not recommended



Normalizing Transformations

« Since DLT is not invariant to transformations,
what is a good choice of coordinates?

e.g.
— Translate centroid to origin

— Scale to a \5 average distance to the origin
— Independently on both images

W+ h 0 w/ 2]
T.=| 0 w+h h/2
0 0 1




Importance of Normalization

/ / !/ !/ / (hl \
00 0 —x =y -1 yx vy ni2)_,
x, y, 1 0 0 0 _x;xi _xi,yi _x; h3
~102710%2 1  ~10%2 ~10%2 1 ~104 ~104 7102 "
orders of magnitude difference!
- - = =
+ 4 + + + +

Monte Carlo simulation
for identity computation based on 5 points
(not normalized < normalized)



Normalized DLT Algorithm

Objective

Given n=4 2D to 2D point correspondences {X;«<x;’},

determine the 2D homography matrix H such that x;'=Hx;
Algorithm

Normalize points X. =T _x.,X: =T X

Apply DLT algorithm to ’)Z’i <> ’5{;,
Denormalize solution 11 =T’ AT

norm norm




RANSAC

Slides by R. Hartley, A. Zisserman
and M. Pollefeys



Robust Estimation

« What if set of matches contains gross outliers?




RANSAC

Objective
Robust fit of model to data set S which contains outliers
Algorithm

Randomly select a sample of s data points from S and
instantiate the model from this subset.

Determine the set of data points S, which are within a
distance threshold t of the model. The set S;is the
consensus set of samples and defines the inliers of S.

If the subset of S, is greater than some threshold T, re-
estimate the model using all the points in S, and terminate

If the size of S, is less than T, select a new subset and
repeat the above.

After N trials the largest consensus set S; is selected, and
the model is re-estimated using all the points in the
subset S,




How Many Samples?

Choose N so that, with probability p, at least one random
sample is free from outliers. e.g. p=0.99

i-(-e) ) =1-
N =log(1- p)/logll - (1-e) )

proportion of outliers e

S 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177




Acceptable Consensus Set

 Typically, terminate when inlier ratio reaches expected

ratio of inliers

T=(1—e)n



Adaptively Determining the Number of Samples

e is often unknown a priori, so pick worst case, e.g. 50%,
and adapt if more inliers are found, e.g. 80% would yield

e=0.2

— N==,sample count=0

— While N>sample countrepeat
» Choose a sample and count the number of inliers
» Set e=1-(number of inliers)/(total number of points)
 Recompute Nfrom e
* Increment the sample countby 1

_ Terminate (W = Tog(1- p)/Togli-(1-¢)"))



Other robust algorithms

« RANSAC maximizes number of inliers
« LMedS minimizes median error

 Not recommended: case deletion, iterative
least-squares, etc.



Automatic Computation of H

Objective
Compute homography between two images
Algorithm
Interest points: Compute interest points in each image

Putative correspondences: Compute a set of interest
point matches based on some similarity measure

RANSAC robust estimation: Repeat for N samples

(a) Select 4 correspondences and compute H

(b) Calculate the distance d, for each putative match

(c) Compute the number of inliers consistent with H (d, <t)
Choose H with most inliers

Optimal estimation: re-estimate H from all inliers by
minimizing ML cost function with Levenberg-Marquardt

Guided matching: Determine more matches using
prediction by computed H

Optionally iterate last two steps until convergence




Determine Putative Correspondences

« Compare interest points
Similarity measure:
— SAD, SSD, ZNCC in small neighborhood

 If motion is limited, only consider interest points with
similar coordinates



Example: robust computation

Interest points
(500/image)
(640x480)

#in  1-e adapt. N

6 2% 20M
10 3% 2.5M
44 16% 6,922
58 21% 2,291
73 26% 911

151 56% 43

Putative correspondences (268)
(Best match,SSD<20,+320)
= Outliers (117)

. (=1.25 pixel; 43 iterations)

Inliers (151)

=~ Final inliers (262)
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Radial Distortion and
Undistortion

Slides by R. Hartley, A. Zisserman
and M. Pollefeys



Radial Distortion

short and long focal length

radial distortion

correction

@)

-

linear image
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Typical Undistortion Model

Correction of distortion

t=x.+L(r)(—x) =y + L)Yy —y)
Choice of the distortion function and center

T =% + (To — ez)(K1r? + Kor* +...)
Y=yo+ Yo — ) (K1r® + Kor* +...)

r=(z, _Cx)z + (Zlo_cu)2 -

Computing the parameters of the distortion function
(i) Minimize with additional unknowns
(i) Straighten lines

(iii) ...

72



radial distortion

correction

linear image
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Two-View Geometry

Slides by R. Hartley, A. Zisserman and M. Pollefeys



Three questions:

(i) Correspondence geometry: Given an image point X in the first
image, how does this constrain the position of the corresponding

point X’ in the second image?

(ii) Camera geometry (motion): Given a set of corresponding image
points {X, <Xx’.}, 1=1,...,n, what are the cameras P and P’ for the

two views?

(iif) Scene geometry (structure): Given corresponding image points
X; <>Xx’; and cameras P, P’, what is the position of (their pre-

image) X in space?



The Epipolar Geometry

®

C, C’, x, X’ and X are coplanar



The Epipolar Geometry

< epipolar line
© forx

What if only C,C’,x are known?



The Epipolar Geometry

All points on 7t project on 1 and I’



The Epipolar Geometry

L J
+ X
®
/
¢ . / € e T
baseline

Family of planes & and lines l and I’
Intersection in € and ¢’



The Epipolar Geometry

epipoles e, €’

= intersection of baseline with image plane

= projection of projection center in other image
= vanishing point of camera motion direction

baseline

an epipolar plane = plaﬁe containing baseline (1-D family)

an epipolar line = intersection of epipolar plane with image
(always come in corresponding pairs)



Example: Converging Cameras




Example: Motion Parallel to Image Plane

/ ,

e at /"/ / e’ at

infinity _L_ . // // infinity
Va y

(simple for stereo — rectification)
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Example: Forward Motion

E
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The Fundamental Matrix F

algebraic representation of epipolar geometry

X

we will see that mapping 1s a (singular) correlation
(1.e. projective mapping from points to lines)
represented by the fundamental matrix F



The Fundamental Matrix F

correspondence condition

The fundamental matrix satisfies the condition that for
any pair of corresponding points x<>x’ in the two

images XvT Fx =0 (X'T ' O)



The Fundamental Matrix F

X(L)=P'x+rC  (PP* =1}
1=P'CxP'P'x P'x

F=[¢|PP*

(note: doesn’t work for C=C’ = F=0)



The Fundamental Matrix F

F 1s the unique 3x3 rank 2 matrix that
satisfies X’ 'Fx=0 for all x<>x’

(i) Transpose: if F is fundamental matrix for (P,P”), then FT is
fundamental matrix for (P’,P)

(ii) Epipolar lines: '=Fx & I=F'x’

(iii) Epipoles: on all epipolar lines, thus ¢’TFx=0, Vx =¢’TF=0,
similarly Fe=0

(iv) F has 7 d.o.f. , 1.e. 3x3-1(homogeneous)-1(rank?2)

(v) F 1s a correlation, projective mapping from a point x to a line
I’=Fx (not a proper correlation, i.e. not invertible)



Two View Geometry Computation: Linear Algorithm

For every match (mm’): X" Fx =0
X'Xf + X Y+ X s+ VX + Y Yo+ Y S+ X+ Y+ f35=0

separate known from unknown

[X'X,X'y,X',y'x,y'y,y',X,y,IIﬁl,ﬂz,ﬂ3,f21,fzz,f23,f31,]22,]@,3]T = O
(data) (unknowns)

(linear)

B | | ] ] N
xl.xl x1.y1 x.l J’1.x1 yl.yl y.1 x} Jfl 1

! ! ! '

x,x, Xy, X, y,x, y'n.yn yo'n Jén y} i

Af =0



Benefits from having F

* Given a pixel in one image, the
corresponding pixel has to lie on epipolar
line

« Search space reduced from 2-D to 1-D



Image Pair Rectification

simplify stereo matching
by warping the images

Apply projective transformation so that epipolar lines

correspond to horizontal scanlines

-

C

—

—

0

- He map epipole e to (1,0,0)

try to minimize image distortion

problem when epipole in (or close to) the image



Planar Rectification

(standard approach)

Bring two views
to standard stereo setup

(moves epipole to ) |
(not possible when in/close to image)
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