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Lecture Outline 

•  Triangulating a Polygon  

•  Voronoi diagrams 
•  Delaunay triangulations 
– David M. Mount, CMSC 754: Computational 

Geometry lecture notes, Department of 
Computer Science, University of Maryland, 
Spring 2012 
•  Lectures 11, 12 and 13 

– Slides by: 
•  M. van Kreveld (Utrecht University) 
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Triangulating a Polygon (intro) 

Slides by M. van Kreveld  
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Simple Polygon 
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Triangulation 
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Partition polygon P into non-overlapping 
triangles using diagonals only. 



Triangulation 
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Every simple polygon admits a triangulation. 
Every triangulation of an n-gon has exactly 
n-2 triangles. 



Polygons and Visibility 

•  Two points in a simple polygon can see 
each other if their connecting line segment 
is in the polygon 
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The Art Gallery Problem 

•  How many cameras are needed to guard a 
given art gallery so that every point is 
seen? 
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The Art Gallery Problem 

•  In geometry terminology: How many points 
are needed in a simple polygon with n 
vertices so that every point in the polygon 
is seen? 

•  The optimization problem is 
computationally difficult 

•  Art Gallery Theorem: ⌊𝑛/3⌋ cameras are 
occasionally necessary but always 
sufficient 
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Examples 
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Examples 
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Diagonals 

•  Why are ⌊𝑛/3⌋ cameras always 
enough? 

•  Assume polygon P is 
triangulated: a decomposition 
of P into disjoint triangles by a 
maximal set of non-intersecting 
diagonals 

•  Diagonal of P: open line 
segment that connects two 
vertices of P and fully lies in the 
interior of P 
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A Triangulation Always Exists 

•  Lemma: A simple polygon with n 
vertices can always be triangulated, 
and always with n-2 triangles 

•  Proof: Induction on n. If n = 3, it is 
trivial 

•  Assume n > 3. Consider the leftmost 
vertex v and its two neighbors u and 
w. 

•  Either uw is a diagonal (case 1), or 
part of the boundary of P is in Δuvw 
(case 2) 

•  Case 2: choose the vertex t in Δuvw 
farthest from the line through u and 
w, then vt must be a diagonal 

14 



A Triangulation Always Exists 

•  In case 1, uw cuts the polygon into a triangle and a 
simple polygon with n-1 vertices, and we apply induction 

•  In case 2, vt cuts the polygon into two simple polygons 
with m and n - m + 2 vertices, 3 ≤ m ≤ n - 1, and we also 
apply induction 

•  By induction, the two polygons can be triangulated using 
m - 2 and n - m + 2 - 2 = n - m triangles. So the original 
polygon is triangulated using m - 2 + n - m = n – 2 
triangles 
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A 3-coloring Always Exists 

•  Observe: the dual graph 
of a triangulated simple 
polygon is a tree 

•  Dual graph: each face 
gives a node; two  
nodes are connected if 
the faces are adjacent 
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A 3-coloring Always Exists 

•  Lemma: The vertices of a 
triangulated simple polygon can 
always be 3-colored 

•  Proof: Induction on the number of 
triangles in the triangulation. Base 
case: True for a triangle 

•  Every tree has a leaf. Remove the 
corresponding triangle from the 
triangulated polygon, color its 
vertices, add the triangle back, and 
let the extra vertex of the 
neighboring triangle have the color 
that is not present at its neighbors 
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A 3-coloring Always Exists 
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⌊𝑛/3⌋ Cameras are Enough 

•  For a 3-colored, triangulated 
simple polygon, one of the color 
classes is used by at most ⌊𝑛/3⌋ 
colors.  
– Place the cameras at these vertices 

•  This argument is called the 
pigeon-hole principle 

•  Why does the proof fail when the 
polygon has holes? 
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Triangulating a Polygon 

Slides by M. van Kreveld (Utrecht 
University) 
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History 

•  A really naive algorithm is O(n^4 ):  
– check all n^2 choices for a diagonal, each in 

O(n) time. Repeat this n − 1 times.  

•  A better naive algorithm is O(n^2 );  
–  find an ear in O(n) time; then recurse. 3.  

•  First non-trivial algorithm: O(n log n) 
[GJPT-78]  

•  Linear complexity algorithms do exist… 
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Algorithm 
•  Partition polygon into trapezoids.  

•  Convert trapezoids into monotone 
subdivision.  

•  Triangulate each monotone piece 
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Monotone Polygons 
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1.  A polygonal chain C is monotone w.r.t. line L if any line 
orthogonal to L intersects C in at most one point.   

•  A polygon is monotone w.r.t. L if it can be decomposed into 
two chains, each monotone w.r.t. L. 



Trapezoidal Decomposition 
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•  At each vertex, extend vertical line until it 
hits a polygon edge. 

•  Each face of this decomposition is a 
trapezoid; which may degenerate into a 
triangle. 

•  Time complexity is O(n log n). 



Trapezoidal Decomposition 
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Monotone subdivision 

•  Call a reflex vertex with both rightward 
(leftward) edges a split (merge) vertex. 

•  Non-monotonicity comes from split or 
merge vertices. 

•  Add a diagonal to each to remove the non-
monotonicity. 

. 
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•  To each split (merge) vertex, add a 
diagonal joining it to the polygon vertex of 
its left (right) trapezoid. 

 

Monotone subdivision 
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•  Remove all trapezoidal edges.  

•  The polygon boundary plus new split/
merge edges form the monotone 
subdivision. 

Monotone subdivision 
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Triangulating a Monotone Polygon 

•  How to triangulate a 
y-monotone polygon? 
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Triangulating a Monotone Polygon 

•  How to triangulate a 
y-monotone polygon? 
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The Algorithm 

•  Sort the vertices top-to-bottom by a merge 
of the two chains 

•  Initialize a stack. Push the first two vertices 

•  Take the next vertex v, and triangulate as 
much as possible, top-down, while 
popping the stack 

•  Push v onto the stack 
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Result 

•  Theorem: A simple polygon with n vertices 
can be partitioned into y-monotone pieces in 
O(n log n) time 

•  Theorem: A monotone polygon with n 
vertices can be triangulated O(n) time 

•  Can we immediately conclude: 
•  A simple polygon with n vertices can be 

triangulated in O(n log n) time ??? 
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Result 

•  We need to argue that all y-monotone polygons that we 
will triangulate have O(n) vertices together 

•  Initially we had n edges. We add at most n-3 diagonals in 
the sweeps. These diagonals are used on both sides as 
edges. So all monotone polygons together have at most 
3n-6 edges, and therefore at most 3n-6 vertices 

•  Hence we can conclude that triangulating all monotone 
polygons together takes only O(n) time 

•  Theorem: A simple polygon with n vertices can be 
triangulated O(n log n) time 
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Voronoi Diagrams 

Slides by M. van Kreveld 
(Utrecht University) 
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Voronoi Diagram 

•  Given ambulance 
posts, where should 
the ambulance come 
from in case of an 
emergency 
somewhere? 
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Voronoi Diagram 

Definition 
•  The Voronoi diagram 

induced by a set of 
points (called sites): 

•  Subdivision of the 
plane where the faces 
correspond to the 
regions where one 
site is closest 
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Spatial Interpolation 

•  Suppose we tested 
the soil at a number of 
sample points and 
classified the results 
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Spatial Interpolation 
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Spatial Interpolation 

•  Suppose we 
measured lead 
concentration at a 
number of sample 
points (natural 
neighbor 
interpolation) 
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Spatial Interpolation 
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Observations 

•  Edges are parts of 
bisectors 

•  Some edges are half-
infinite 

•  Some cells are 
unbounded 
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Every Voronoi cell is the 
intersection of n−1 half-
planes, if there are n 
sites 

=> all cells are convex 
and have up to n−1 
edges in the boundary 
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Structure 

•  The Voronoi diagram of n sites has the 
following structure: 

•  If all n sites lie on a line, then the Voronoi 
cell boundaries are parallel lines, so the 
“graph” is disconnected 

•  Otherwise, the Voronoi cell boundaries 
form a connected “graph” 
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Complexity 

•  Theorem: The Voronoi diagram on f sites in 
the plane has at most 2n−5 Voronoi vertices 
and at most 3n−6 Voronoi edges (including 
lines and half-lines) 

•  Proof: If the sites are colinear, then it is trivial 

•  Otherwise, we will use Euler’s formula for 
planar graphs 
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Complexity 

•  Euler’s formula for planar graphs: a 
connected planar graph with nv vertices, ne 
edges, and nf faces satisfies: 

 

nv−ne+nf = 2 

•  However, a Voronoi diagram is not a 
proper graph 
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Complexity 
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Complexity 

•  Substitution in Euler’s formula nv−ne+nf = 2 
gives: 

(VV +1)−VE+n = 2 
•  Every edge is incident to exactly 2 vertices, and 

every vertex is incident to at least 3 edges 

•  Sum-of-degree-of-all-vertices = 2 VE 
•  Sum-of-degree-of-all-vertices ≥ 3 VV  

•  Thus 2 VE ≥ 3 VV 
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Complexity 

The combination of 

(VV +1)−VE+n = 2 

and 

2 VE ≥ 3 (VV+1) 

gives the desired bounds VV ≤ 2n−5 and  
VE ≤ 3n−6 
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Time Complexity 

•  Theorem: The Voronoi diagram of a set of n 
point sites in the plane can be computed in 
O(nlogn) time 

•  Algorithms 
– Compute the intersection of n−1 half-planes for 

each site, and “merge” the cells into the diagram 
– Divide-and-conquer (1975, Shamos & Hoey) 
– Plane sweep (1987, Fortune) 
– Randomized incremental construction (1992, 

Guibas, Knuth & Sharir) 
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Empty Circle Property 

•  Every Voronoi vertex 
is the center of an 
empty circle through 3 
sites 

•  Every point on a 
Voronoi edge is the 
center of an empty 
circle through 2 sites 
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Motion Planning for a Disc 

•  Can we move a disc 
from one location to 
another amidst 
obstacles? 
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Motion Planning for a Disc 

•  Since the Voronoi 
diagram of point sites 
is locally “furthest 
away” from those 
sites, we can move 
the disc if and only if 
we can do so on the 
Voronoi diagram 
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Delaunay Triangulations 

Slides by M. van Kreveld  
(Utrecht University) 
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Motivation: Terrains by Interpolation 

To build a model of the 
terrain surface, we can 
start with a number of 
sample points where we 
know the height. 
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Motivation: Terrains 

•  How do we interpolate 
the height at other 
points? 
–  Nearest neighbor 

interpolation 

–  Piecewise linear 
interpolation by a 
triangulation 

–  Natural neighbor 
interpolation 
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Triangulation 

•  Let P = {p1, …, pn} be a 
point set 

•  A triangulation of P is a 
maximal planar 
subdivision with vertex 
set P 

•  Complexity: 
•  2n-2-k triangles 
•  3n-3-k edges 

•  where k is the number 
of points in P on the 
convex hull of P 
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Which Triangulation? 
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Triangulation 

•  For interpolation, it is good if triangles are 
not long and skinny. We will try to use 
large angles in our triangulation. 
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Angle Vector of a Triangulation 

•  Let T be a triangulation of P with m triangles. Its 
angle vector is A(T) = (a1, …, a3m) where a1, …, 
a3m are the angles of T sorted by increasing 
value. 

•  Let T’ be another triangulation of P. We define 
A(T) > A(T’) if A(T) is lexicographically larger 
than A(T’) 

•  T is angle optimal if A(T)≥A(T’) for all 
triangulations T’ of P. 
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Edge Flipping 

•  An edge is illegal if min{ai} < min{ai’} 

•  Flipping an illegal edge increases the 
angle vector 
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Illegal Edges 

•  An edge pipj is illegal if an only if pl lies in 
the interior of the circle C 
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Thales Theorem 
•  Theorem: Let C be a circle, 

l a line intersecting C in 
points a and b, and p, q, r, 
s points lying on the same 
side of l. Suppose that p, q 
lie on C, r lies inside C, and 
s lies outside C. Then: 

•  Where   abc  denotes the 
smaller angle defined by 
three points a, b, c. 
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Legal Triangulations 
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Voronoi Diagram and Delaunay Graph 

•  Let P be a set of n 
points in the plane 

•  The Voronoi diagram 
Vor(P) is the 
subdivision of the plane 
into Voronoi cells V(p) 

•  Let G be the dual graph 
of Vor(P) 

•  The Delaunay graph 
DG(P) is the straight 
line embedding of G 
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Delaunay Triangulation 

•  If the point set P is in general position, 
then the Delaunay graph is a triangulation 
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Empty Circle Property 

Theorem: Let P be a set of 
points in the plane, and let T 
be a triangulation of P. Then T 
is a Delaunay triangulation of 
P if and only if the 
circumcircle of any triangle of 
T does not contain a point of 
P in its interior. 
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Delaunay Triangulations and Legal 
Triangulations 

Theorem: Let P be a set of 
points in the plane. A 
triangulation T of P is legal if 
and only if T is a Delaunay 
triangulation. 
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Computing Delaunay Triangulations 

•  There are several ways to compute the 
Delaunay triangulation: 
– By iterative flipping from any triangulation 

– By plane sweep 

– By randomized incremental construction 

– By conversion from the Voronoi diagram 

•  The last three run in O(nlogn) time 
[expected] for n points in the plane 
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Incremental Construction 

•  L. J. Guibas, D. E. Knuth, and M. Sharir, Randomized incremental 
construction of Delaunay and Voronoi diagrams, Algorithmica,7, 
1992, 381–413. 

•  Notes by D. Mount 

•  Insert sites in random order and update the triangulation with each 
addition 

•  After each insertion the expected number of structural changes in the 
diagram is O(1) 

•  The challenge is keeping track of where newly inserted sites are to be 
placed in the diagram 

•  Simple solution: put each of the uninserted points into a bucket 
according to the triangle that contains it in the current triangulation 

•  Claim that the expected number of times that a site is re-bucketed is 
O(log n) 
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In Circle Test 
•  Assume that no four sites are co-circular 
•  In circle test is equivalent to a determinant 

computation 
–  Assume that abcd define a counterclockwise convex 

polygon (abc is the original triangle) 
–  If not, d lies inside triangle and the test fails 

–  d lies in circumcircle if and only if the following 
determinant is positive (if it is 0, the points are co-
circular) 
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Incremental Update 

•  Create a non-Delaunay triangulation and fix it 
•  Join new point with the vertices of the triangle 

that contains it 
•  Flip edges as needed 
•  Both can be done in O(1) 

•  Initialize by enclosing all points in a very large 
triangle (its vertices must lie outside of all 
circumcircles of final triangulation) 
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Incremental Update 

•  For each new point p, we have created three 
new triangles 

•  For each of the triangles that have been added, 
we check the vertex of the triangle that lies on 
the opposite side of the edge that does not 
include p 

•  If this vertex fails the in circle test, then we swap 
the edge creating two new triangles that are 
adjacent to p 

•  We repeat the same test with these triangles 
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Incremental Update Example 
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Details 

•  This is only a sketch of algorithm 
•  We would need to prove that a triangulation that 

is locally Delaunay is also globally Delaunay 

•  Each time triangles are deleted and new 
triangles are made, uninserted points must be 
re-bucketed in O(1) time per point and each 
point is expected to be re-bucketed O(logn) 
times 

91 


