
CS 532: 3D Computer Vision
Lecture 11

Enrique Dunn

edunn@stevens.edu

Lieb 310

1

Lecture Outline

• Unorganized point clouds
– Range queries and kd-trees

• Descriptors for 3D point clouds

• David M. Mount, CMSC 754:
Computational Geometry lecture notes,
Department of Computer Science,
University of Maryland, Spring 2012
– Lecture 16

2

Point Clouds

3

Unorganized Point Clouds

• In many cases, data come as unorganized
point clouds
– Not trivial to generate meshes even given a

2D reference frame (see Homework 6.2)
– Even more complicated to fuse multiple

viewpoint-based meshes
– Some sensors (moving LIDAR) measure only

points

4

What can be done?

• While mesh generation is possible, it is not
guaranteed to be correct
– Even watertight manifolds can be generated

using Poisson surface reconstruction (see
previous notes)

– It is often hard to discriminate forward and
backward facing points

– It is hard to determine whether there are gaps
between points

5

What can be done?

• Process the data by assuming possible
connections between points
– I.e. assuming nearby points belong to the

same smooth surface

• Do not make hard decisions

6

Key Parameter: Scale

• Trade-off between fidelity to data and
robustness to noise

• If analysis is performed at small scale,
details (high curvature) can be preserved

• If data are noisy, high curvature typically
corresponds to noise…

7

Nearest Neighbors

• Number one enabling technology for working
with unorganized point clouds: Nearest
Neighbor Search

• Algorithms cannot be quadratic
• It can be shown that kd-trees can be

generated in O(n logn) time
• Queries take O(logn) per point
– k queries: find k nearest neighbors of query point
– epsilon queries: find neighbors within an ε-ball

centered at the query point

8

Tools

• knnsearch() in Matlab
– http://www.mathworks.com/help/stats/knnsearch.html
– Do multiple queries with one call

• FLANN library
– http://www.cs.ubc.ca/research/flann/
– Bindings for C/C++, Matlab and python, part of PCL

• CvKNearest in OpenCV (which has bindings for C/C+
+, Python and Java)

• KDTree in scikit

• All these are not limited to 3D data

9

1D Range Queries

• 1D range query problem: Preprocess a set of n
points on the real line such that the ones inside a
1D query range (interval) can be reported fast

• The points p1, …, pn are known beforehand, the
query [x, x’] only later

• A solution to a query problem is a data structure
description, a query algorithm, and a
construction algorithm

10

Binary Search Tree

11

Binary Search Tree

12

Balanced Binary Search Trees
• A balanced binary search tree with the points in

the leaves

13

Balanced Binary Search Trees
• The search path for 25

14

Balanced Binary Search Trees
• The search paths for 25 and 90

15

Example 1D Range Query

• A 1D range query with [25, 90]

16

Node Types for a Query

• Three types of nodes for a given query:
–White nodes: never visited by the query
– Grey nodes: visited by the query, unclear if

they lead to output
– Black nodes: visited by the query, whole

subtree is output

17

Node Types for a Query

• The query algorithm comes down to what we do
at each type of node

• Grey nodes: use query range to decide how to
proceed: to not visit a subtree (pruning), to report
a complete subtree, or just continue

• Black nodes: traverse and enumerate all points
in the leaves

18

Example 1D Range Query

• A 1D range query with [61, 90]

19

1D Range Query Algorithm

20

Query Time Analysis

• The efficiency analysis is based on counting the
numbers of nodes visited for each type
– White nodes: never visited by the query; no time

spent
– Grey nodes: visited by the query, unclear if they lead

to output; time complexity depends on n
– Black nodes: visited by the query, whole subtree is

output; time complexity depends on k, the output size

21

Query Time Analysis

• Grey nodes: they occur on only two paths in the
tree, and since the tree is balanced, its depth is
O(logn)

• Black nodes: a (sub)tree with m leaves has m-1
internal nodes; traversal visits O(m) nodes and
finds m points for the output

• The time spent at each node is O(1)

=>O(logn+k) query time

22

Range Queries in 2D

23

Kd-Trees

• Kd-trees, the idea: Split the point set
alternatingly by x-coordinate and by y-coordinate

• Split by x-coordinate: split by a vertical line that
has half the points to its left or on it, and half to
its right

• Split by y-coordinate: split by a horizontal line
that has half the points below or on it, and half
above it

24

Kd-Trees

25

Kd-Tree Construction

26

Kd-Tree Region of Nodes

27

Kd-Tree Querying

28

Kd-Tree Querying

29

Nearest Neighbor Search

• Effects of input distribution on search

30

Kd-Trees in Higher Dimensions

Theorem: A set of n points in d-space

can be preprocessed in O(n logn) time into a data
structure of O(n) size

so that any d-dimensional range query can be
answered in O(n1-1/d +k) time, where k is the
number of answers reported

31

FLANN

• Adaptively selects between
– Randomized kd-trees
– Hierarchical k-means trees

• Criteria
– Dimensionality
– Relative weights on tree construction vs.

search optimization

32

Normal Estimation in Point Clouds

• Important task in itself
• Useful for encoding data in

representations enabling classification,
matching and indexing

• Assumption: each point lies on locally
linear (planar) patch along with some
(many) of its neighbors

33

Normal Estimation in Point Clouds

• Find reference point’s nearest neighbors
– Forming triplets (ref. point + 2 NNs) increases

complexity with dubious benefits
– Form pairs and accumulate partial information,

since two points do not define a surface

• Accumulate information for reference
point’s tangent plane
– Vector connecting ref. point and each NN

belongs to tangent plane

34

Normal Estimation in Point Clouds

35

Normal Estimation in Point Clouds

36

Normal Estimation in Point Clouds

• Tombari et al. resolve sign of eigenvectors (x, y, z)
by making them consistent with majority of
neighborhood points

• Where does the surface normal point for convex
shapes?

37

The Right Way

• Count nearest neighbors more, attenuate
influence of remote points
– At the very least, normalize vectors that

contribute to covariance matrix
– Use weight function on outer products that

decreases with distance

38

Normal Estimation

39

Descriptors for 3D Point
Clouds

40

Invariant Descriptors

• Objective: represent point cloud (or surface) in a
way that it can be compared and matched with
other point clouds

• Trade-off between Uniqueness and Repeatability
• Invariance to:
– Rigid transformation of the object
– Viewpoint change of the scanner(s)
– Sampling variations
– Noise

• Local and global descriptors have been proposed
– Focus on local here

41

Spin Images

• Johnson and Hebert, PAMI 1999
• Arguably most popular 3D shape

descriptor, used in several recognition
engines

• Fast to compute and very fast to compare

42

Spin Images

• Computed in a cylindrical coordinate system
defined by a reference point and its corresponding
normal

• All points within this region are transformed by
computing:
– the distance from the reference normal ray α
– the height above the reference normal plane β

• A 2D histogram of α and β is used as the
descriptor

• Due to integration around the normal of the
reference point, spin images are invariant to
rotations about the normal

43

Spin Images

44

Spin Images

45

Spin Images

46

Effects of Parameters

• Parameters of a spin image
– Number of bins horizontally and vertically

• Make vertical number of bins odd

– Bin size
– Support angle (max angle between reference normal

and neighboring point normal to be included)
• Default 60 degrees

47

3D Shape Contexts

• Frome et al., ECCV 2004
• Histogram of neighboring points in sphere

48

3D Shape Contexts

• Frome et al., ECCV 2004
• Histogram of neighboring points in sphere

• Challenge: matching requires rotations

49

3D SURF

• Knopp et al., ECCV 2010
• Detector and descriptor
• Convert surface into voxel representation
• Compute second-order derivatives at several

scales (3 octaves)

50

3D SURF

• Saliency function: absolute value of the
determinant of the Hessian matrix at each point

• Select keypoints after non-max suppression
• Compute invariant local coordinate frame
• Descriptor:
– N×N×N grid around the feature
– At each grid cell, store a 6-dimensional description

vector of Haar wavelet responses
– Default N=3

51

3D Haar Filters

52

Fast Point Feature Histograms

• Rusu et al., ICRA 2009 (other
variations exist)

• PFH: Given points and normal:
– Find all pairs of neighbors of reference point

and define local frame

– u=ni

– v=(pj-pi)×u

– w=u×v
– Compute properties of frame

53

Fast Point Feature Histograms

• PFH (cont)
– Perform persistence analysis to determine which

features are salient at a given scale
• FPFH:
– Do not compute over all pairs of neighbors, but only

between reference point and its k nearest neighbors
– Then, blend Simplified Point Feature Histograms

(SPFH) with weights inversely proportional to
distances between points (typically 5 bins per
dimension, 125-D descriptor)

– More optimizations in paper

54

Extended Gaussian Images
• Horn, Proc. of the IEEE 1984
• Represent shape by mapping the normal

of each point on unit sphere
– Surface normal has two degrees of freedom

• Convex shapes can be uniquely
reconstructed given EGI
– Non-convex shapes can be described by EGI

with some loss of information

55

Extended Gaussian Images

• Above: input point cloud, EGI, constellation
EGI

• Matching requires alignment of two spherical
histograms
– Unpleasant, at best

56

Analysis of Large-Scale 3D
Point Clouds

57

Segmentation of Large-scale 3D Datasets
• Input: colored point clouds collected by

terrestrial and airborne LIDAR sensors
• Goal: detect and

recognize more
than 100 objects
classes
– Stadiums and

power plants
–Mailboxes and

parking meters
– Powerlines

975 million points

58

A Minimum Cover Approach for
Extracting the Road Network

from Airborne LIDAR Data

• Combine local edge and region information to
estimate road likelihood

• Pose road extraction as minimum cover problem

• Explain likelihood maps by rectangular road
segments with strong preference for
elongated segments

59[Zhu and Mordohai, 3DIM 2009]

Overview of the Algorithm

60

Hypothesis Generation
• Sample hypotheses from region boundaries

returned by NCut segmentation on intensity image
– Captures low-contrast boundaries
– Test multiple values for width (10-25m) and length (40-

300m)

• Output likelihood maps L for each width by
combining boundary and interior feature strengths
– Each likelihood map covers all orientations resulting in

good performance at intersections

61

Detection as Minimum Cover
• Explain likelihood maps by sparsest set of road

segments
• Penalize uncovered parts according to road likelihood

• Penalize covered parts according to bg likelihood

• Penalize for additional components

• NP-hard in general, but greedy approximation with
theoretical guarantees is effective [Felzenszwalb and
McAllester, 2006]

62

Road Detection

63

Road Detection

64

Road Detection

65

City Blocks
Segment city blocks from road
likelihood map using the
intervening contour idea (Leung
and Malik, 1998)

66

Building Detection and Parsing

● Detection of buildings from unorganized range data
● Parsing of the buildings into an hierarchical, semantic
representation

67
[Toshev, Mordohai and Taskar, CVPR 2010]

Approach
• Use a generic grammar based on simple geometric

rules
• Apply dependency parsing for efficient inference
• Define parsing and detection in a single framework

• Primitives:
– Planes and planar patches – explicitly detectable from point

clouds
– Volumes – represent building parts and are enclosed by

planar patches

68

Grammar
• Terminals: planar patches

extracted from point cloud.
• Non terminals:
– Roof components
– Volumes enclosed by the roofs
– Supernodes : a global “building”

and a global “non-building” node
used for detection

69

Classification

• Classification of a volume using a linear SVM
• Features are extracted from planar patches

enclosing the volume:
– Elevation
– Distance to the nearest ground point
– Convexity of the upper volume surface
– Scatter of point cloud in the volume
– Area and aspect ratio
– Degree of enclosure by empty space
– Fitting error

70

Parsing

• Productions for parsing planar patches are deterministic
• Hierarchy among volumes is not deterministic – dependency
parsing
• For set of planar patches, a sequence of productions generates a
parse tree

71

Inference
• Construct a directed graph G consisting of the
volumes
• Edge weights represent:
–Hierarchy based on the area
–How likely they belong to the same class
–Whether they are children of the supernodes

• A parse tree T is a maximum spanning tree in G
• Use Chi-Liu/Edmonds algorithm to compute
MST

72

Quantitative Results

• 9 blocks used for training (buildings and their
parses are labeled)

• 78 blocks used for testing (only buildings are
labeled)

• Detection results (accuracy of patch
classification): 89.3%

• Parsing accuracy (3-fold cross-validation on the
9 blocks): 76.2 %

73

Detection Results

74

Detection Results

75

Detection Results

76

Parsing Results

77

3D Object Detection using Bottom-
up and Top-down Descriptors

• Detect objects in large-scale 3D datasets
• Requirements:
– Precision
– Recall
– Speed

78[Patterson, Mordohai and Daniilidis, ECCV 2008]

Shape Descriptors
• Different descriptors provide different trade-

off between speed and accuracy
• More types of invariance => faster, less

discriminative
– E.g. spin images vs. 3D shape contexts

• Global descriptors are more accurate, but
are sensitive to occlusion (and deformation)
– Require only one comparison per target
– Need segmentation hypotheses

79

Approach

• Spin images for fast bottom-up detection
of regions of interest
– Objective: maximize recall

• Extended Gaussian Images (EGIs) as
global top-down descriptors to verify
hypotheses
– Objective: prune wrong hypotheses
– Side product: best alignment with most similar

model

80

Experiments

• Dataset: 220 million points collected from
terrestrial sensors

• 2.2 million used as training set for spin
images
– 81,000 spin images in DBSI, 2600 positive

– 17 cars in DBEGI

81

Bottom-up Detection

• Spin images of unknown scene classified as
positive or negative

• Positive spin images clustered to form hypotheses
– Minimum number required for hypothesis

82

Results

83

Results

84

Results

85

Precision-Recall Curve
• Data: 1221 cars
• Bottom-up stage:
– 2200 hypotheses,

1100 correct

• Top-down stage *:
– 905 true positives
– 74 false alarms
– 316 missed detectionsPrecision

R
ec

al
l

86

Car Detection Video

87

