CS 532: 3D Computer Vision
Lecture 11

Enrigue Dunn -/\

edunn@stevens.edu
Lieb 310

APT

30
p ‘ —
1D

Lecture Outline

* Unorganized point clouds
— Range queries and kd-trees

* Descriptors for 3D point clouds

* David M. Mount, CMSC 754:
Computational Geometry lecture notes,
Department of Computer Science,
University of Maryland, Spring 2012

— Lecture 16

Point Clouds

Unorganized Point Clouds

* In many cases, data come as unorganized
point clouds

— Not trivial to generate meshes even given a
2D reference frame (see Homework 6.2)

— Even more complicated to fuse multiple
viewpoint-based meshes

— Some sensors (moving LIDAR) measure only
points

What can be done”?

* While mesh generation is possible, it is not
guaranteed to be correct
— Even watertight manifolds can be generated

using Poisson surface reconstruction (see
Drevious notes)

— It is often hard to discriminate forward and
packward facing points

— It is hard to determine whether there are gaps
petween points

What can be done”?

* Process the data by assuming possible
connections between points

— |.e. assuming nearby points belong to the
same smooth surface

* Do not make hard decisions

Key Parameter: Scale

* Trade-off between fidelity to data and
robustness to noise

* If analysis is performed at small scale,
details (high curvature) can be preserved

* |f data are noisy, high curvature typically
corresponds to noise...

Nearest Neighbors

Number one enabling technology for working
with unorganized point clouds: Nearest
Neighbor Search

Algorithms cannot be quadratic

It can be shown that kd-trees can be
generated in O(n logn) time

Queries take O(logn) per point

— k queries: find k nearest neighbors of query point

— epsilon queries: find neighbors within an e-ball
centered at the query point

Tools

knnsearch() in Matlab
— http://www.mathworks.com/help/stats/knnsearch.html

— Do multiple queries with one call
FLANN library

— http://www.cs.ubc.ca/research/flann/
— Bindings for C/C++, Matlab and python, part of PCL

CvKNearest in OpenCV (which has bindings for C/C+
+, Python and Java)

KDTree In scikit

All these are not limited to 3D data

1D Range Queries

* 1D range query problem: Preprocess a set of n
points on the real line such that the ones inside a
1D query range (interval) can be reported fast

* The points py, ..., p, are known beforehand, the
guery [x, x’] only later

* A solution to a query problem is a data structure
description, a query algorithm, and a
construction algorithm

Binary Search Tree

root

a left link /
\

a subtree

\ \
% right child
\/ of root

null links

11

Binary Search Tree

parent of A and R
left link
of E

key

Q @) ~—_ value
@ @ associated
with R

f \

keys smaller than E keys larger than E

12

Balanced Binary Search Trees

* A balanced binary search tree with the points in

the leaves

19

19

23

30

37

89

70

80

93

97

Balanced Binary Search Trees

* The search path for 25

31110

19

23] |-

89

70

80

93

97

Balanced Binary Search Trees
* The search paths for 25 and 90

@/@\
(0 @ CERC

D Hb R s

Example 1D Range Query

* A 1D range query with [25, 90]

0946247080

Node Types for a Query

* Three types of nodes for a given query:
— White nodes: never visited by the query

— GGrey nodes: visited by the query, unclear if
they lead to output

— Black nodes: visited by the query, whole
subtree is output

Node Types for a Query

* The query algorithm comes down to what we do
at each type of node

* Grey nodes: use query range to decide how to
proceed: to not visit a subtree (pruning), to report
a complete subtree, or just continue

* Black nodes: traverse and enumerate all points
In the leaves

Example 1D Range Query

* A 1D range query with [61, 90]

1D Range Query Algorithm

Algorithm 1DRANGEQUERY(T, [x: X'])
Veplit <—FINDSPLITNODE(T, X, x’)
if Vopiic is a leaf
then Check if the point in Vg must be reported.
else v «— lc(Vgplit)
while v is not a leaf
do if x <k,
then REPORTSUBTREE(r¢c(V))
v —lc(Vv)
else v« rc(v)

OO0 Nk W=

—t
= O

Similarly, follow the path to x’, and ...

[
No

Check if the point stored in v must be reported.

20

Query Time Analysis

* The efficiency analysis is based on counting the
numbers of nodes visited for each type

— White nodes: never visited by the query; no time
spent

— Grey nodes: visited by the query, unclear if they lead
to output; time complexity depends on n

— Black nodes: visited by the query, whole subtree is
output; time complexity depends on k, the output size

Query Time Analysis

* Grey nodes: they occur on only two paths in the
tree, and since the tree is balanced, its depth is
O(logn)

* Black nodes: a (sub)tree with m leaves has m-1
iInternal nodes; traversal visits O(m) nodes and
finds m points for the output

* The time spent at each node is O(1)

=>0(logn+k) query time

Range Queries in 2D

Kd-Trees

* Kd-trees, the idea: Split the point set
alternatingly by x-coordinate and by y-coordinate

* Split by x-coordinate: split by a vertical line that
has half the points to its left or on it, and half to
its right

* Split by y-coordinate: split by a horizontal line
that has half the points below or on it, and half
above it

Kd-Trees

P4

g P1

Kd-Tree Construction

Algorithm BUILDKDTREE(P, depth)

1. if P contains only one point

2 then return a leaf storing this point

3. else if depth is even

4 then Split P with a vertical line ¢ through the
median x-coordinate into P; (left of or
on ¢) and P, (right of /)

5. else Split P with a horizontal line ¢ through
the median y-coordinate into P; (below
or on () and P, (above /)

6. Vieft < BUILDKDTREE(P|,depth+ 1)
7. Viight +— BUILDKDTREE(P,,depth+ 1)
8. Create a node v storing ¢, make Ve the left

child of v, and make Vo the right child of v.
9. return v

26

Kd-Tree Region of Nodes

region(v) (s

Kd-Tree Querying

()
()
O O
O 3l =
1| P2 P6

) P11

P12

P13

P7RPs

PalP10

28

Kd-Tree Querying

Algorithm SEARCHKDTREE(V,R)
Input. The root of (a subtree of) a kd-tree, and a range R
Output. All points at leaves below v that lie in the range.
if visa leaf
then Report the point stored at v if it lies in R
else if region(ic(v)) is fully contained in R
then REPORTSUBTREE(Ic(V))
else if region(lc(v)) intersects R
then SEARCHKDTREE(lc(V),R)
if region(rc(v)) is fully contained in R
then REPORTSUBTREE(rc(V))
else if region(rc(v)) intersects R
then SEARCHKDTREE(r¢(V).R)

O 0N WhHE

—
©

29

Nearest Neighbor Search

* Effects of input distribution on search

o | —]
O

3

s

Kd-Trees in Higher Dimensions

Theorem: A set of n points in d-space

can be preprocessed in O(n logn) time into a data
structure of O(n) size

so that any d-dimensional range query can be
answered in O(nt-1d +k) time, where k is the
number of answers reported

FLANN

* Adaptively selects between
— Randomized kd-trees
— Hierarchical k-means trees

* Criteria
— Dimensionality

— Relative weights on tree construction vs.
search optimization

Normal Estimation in Point Clouds

* Important task in itself

* Useful for encoding data in
representations enabling classification,
matching and indexing

* Assumption: each point lies on locally
linear (planar) patch along with some
(many) of its neighbors

Normal Estimation in Point Clouds

* Find reference point’s nearest neighbors

— Forming triplets (ref. point + 2 NNs) increases
complexity with dubious benefits

— Form pairs and accumulate partial information,
since two points do not define a surface

* Accumulate information for reference
point’s tangent plane

— Vector connecting ref. point and each NN
belongs to tangent plane

Normal Estimation in Point Clouds

* Form scatter (covariance) matrix

k k
M:EZ(Pi_ﬁ)(pi_ﬁ)Tﬁ 1‘5:%21}3—

* Normal: eigenvector with smallest
eigenvalue (0 eigenvalue if perfect plane)

35

Normal Estimation in Point Clouds

» Form scatter (covariance) matrix

* Normal: eigenvector with smallest
eigenvalue (0 eigenvalue if perfect plane)

« Tombari etal. ECCV 2010:

1
— . —d. - -n)T
M Zi:di<R(R_di) Zl:di'(R(R dl)(pl p)(pl p)
where, R is the radius of the ball around p and d is the
distance from p to p,

Normal Estimation in Point Clouds

* Tombari et al. resolve sign of eigenvectors (X, vy, z)
by making them consistent with majority of
neighborhood points

(7;: — {E’ ; f.'f.f_ < R A (pPi — p} '
S = {3 - d; < R AN (pi —Pp)-

. {x+. S+ > |-

T >0}
T o> {]}

X~ . otherwise

* Where does the surface normal point for convex
shapes?

The Right Way

* Count nearest neighbors more, attenuate
influence of remote points

— At the very least, normalize vectors that
contribute to covariance matrix

— Use weight function on outer products that
decreases with distance

Normal Estimation

* My recommendation

d2
_ —5 (pi-p) (pi-p)"

with o a parameter representing scale.

Descriptors for 3D Point
Clouds

Invariant Descriptors

Objective: represent point cloud (or surface) in a
way that it can be compared and matched with
other point clouds

Trade-off between Unigueness and Repeatability

Invariance to:

— Rigid transformation of the object

— Viewpoint change of the scanner(s)

— Sampling variations

— Noise

Local and global descriptors have been proposed
— Focus on local here

Spin Images

* Johnson and Hebert, PAMI 1999

* Arguably most popular 3D shape
descriptor, used in several recognition
engines

* Fast to compute and very fast to compare

Spin Images

Computed in a cylindrical coordinate system
defined by a reference point and its corresponding
normal

All points within this region are transformed by
computing:

— the distance from the reference normal ray a

— the height above the reference normal plane 3

A 2D histogram of a and {3 is used as the
descriptor

Due to integration around the normal of the
reference point, spin images are invariant to
rotations about the normal

Spin Images

44

Spin Images

3-D Object Spin-image Bilinear
Surface Mesh _ Interpolation
- L]
. . }
' g L Y I(i,j+1 4= (1-a)b
. — L
. : . il - {Ilﬁi.jH:l I-aM l-hrT
’.r"_ [,
. (o])SHx) a
Y \L
» .
. < b——=@9
* ™ . SDC"} =(0,p

I+ 1 j+11 +=ah
. + 1 1) +=
B i o i+ 1L jie=all-b)

45

2-0 points

AB

SEnHMoge

AF

L]

Spin Images

2.D points
A

spin-images

AP

-

P

spin-dmage

AP

LF]

A1

46

Effects of Parameters

* Parameters of a spin image
— Number of bins horizontally and vertically
* Make vertical number of bins odd
— Bin size
— Support angle (max angle between reference normal

and neighboring point normal to be included)
* Default 60 degrees

3D Shape Contexts

* Frome et al., ECCV 2004
* Histogram of neighboring points in sphere

©

4 shell bins 12 sector bins 48 combined bins

48

3D Shape Contexts

* Frome et al., ECCV 2004
* Histogram of neighboring points in sphere

* Challenge: matching requires rotations

3D SURF

Knopp et al., ECCV 2010
Detector and descriptor
Convert surface into voxel representation

Compute second-order derivatives at several
scales (3 octaves)

3D SURF

Lyz(x,0) Lyy(x,0) Liz(x,0)
Lys(x,0) Lyy(x,0) Ly (2, 0) |
L o(x,0) L.y(x.0) L..(x.0)

Saliency function: absolute value of the
determinant of the Hessian matrix at each point

Select keypoints after non-max suppression
Compute invariant local coordinate frame
Descriptor:

— NxNxN grid around the feature

— At each grid cell, store a 6-dimensional description
vector of Haar wavelet responses

— Default N=3

3D Haar Filters

Fast Point Feature Histograms

* Rusu et al., ICRA 2009 (other
variations exist)

* PFH: Given points and normal:

— Find all pairs of neighbors of reference point . o
and define local frame

— U=h a=0v-n;
o V=(pj'pi)xu o= (u-(p;j —pi))/||\pj — pil|
— W=UXV 0 = arctan(w - n;,u - n;)

— Compute properties of frame

Fast Point Feature Histograms

* PFH (cont)

— Perform persistence analysis to determine which
features are salient at a given scale

+ FPFH:

— Do not compute over all pairs of neighbors, but only
between reference point and its k nearest neighbors

— Then, blend Simplified Point Feature Histograms
(SPFH) with weights inversely proportional to
distances between points (typically 5 bins per
dimension, 125-D descriptor)

— More optimizations in paper

.k
1 1

FPFH(p) = SPF(p)+— Y — - SPF(p;)
:Zf Wk

1—=1

Extended Gaussian Images

* Horn, Proc. of the IEEE 1984

* Represent shape by mapping the normal
of each point on unit sphere
— Surface normal has two degrees of freedom
* Convex shapes can be uniquely
reconstructed given EGI
— Non-convex shapes can be described by EGI

with some loss of information ;

Extended Gaussian Images

* Above: input point cloud, EGI, constellation
EGI

* Matching requires alignment of two spherical
histograms

— Unpleasant, at best

56

Analysis of Large-Scale 3D
Point Clouds

Segmentation of Large-scale 3D Datasets

* Input: colored point clouds collected by
terrestrial and airborne LIDAR sensors

* Goal: detect and
recognize more
than 100 objects
classes

— Stadiums and
power plants

— Mailboxes and
parking meters

— Powerlines

975 million points

58

A Minimum Cover Approach for
Extracting the Road Network
from Airborne LIDAR Data

* Combine local edge and region information to
estimate road likelihood

* Pose road extraction as minimum cover problem

* Explain likelihood maps by rectangular road
segments with strong preference for
elongated segments

[Zhu and Mordohai, 3DIM 2009]

Overview of the Algorithm

{2} Input 3D point clowd (b3 Ground plane

(h) Extracted roads - (g1 Min cn'n:r

-jI'| Yoting map

(d) Segmentation

{e) Edge

60

Hypothesis Generation

* Sample hypotheses from region boundaries
returned by NCut segmentation on intensity image
— Captures low-contrast boundaries
— Test multiple values for width (10-25m) and length (40-
300m)
* Output likelihood maps L for each width by
combining boundary and interior feature strengths

— Each likelihood map covers all orientations resulting in
good performance at intersections

Lr(ry) = Y BoaStw,y) + BineSi™ (2, y)

- yvalid
H;cHYel

Detection as Minimum Cover

* Explain likelihood maps by sparsest set of road
segments

* Penalize uncovered parts according to road likelihood
* Penalize covered parts according to bg likelihood

* Penalize for additional components

* NP-hard in general, but greedy approximation with

theoretical guarantees is effective [Felzenszwalb and
McAllester, 2006] cos(r)= 3 c(s)) + 4

(--_.f‘-r}-“*"frf.m-zwz*r"(IRS) — Z (_._.ff'}-"ilf(_l?-j_) -+

Road Detection

63

Road Detection

64

Road Detection

Lo
©

City Blocks

Segment city blocks from road
likelihood map using the
intervening contour idea (Leung
and Malik, 1998)

66

Building Detection and Parsing

J/_

2 i.II T ;:‘ : e x P J
h i /iy)
- T o
WUlldmg part secondary building parts roofs

* Detection of buildings from unorganized range data
* Parsing of the buildings into an hierarchical, semantic
representation

67

[Toshev, Mordohai and Taskar, CVPR 2010]

Approach

Use a generic grammar based on simple geometric
rules

Apply dependency parsing for efficient inference
Define parsing and detection in a single framework

Primitives:
— Planes and planar patches - explicitly detectable from point
clouds

— Volumes - represent building parts and are enclosed by
planar patches

Grammar

* Terminals: planar patches
extracted from point cloud.

* Non terminals:
— Roof components
— Volumes enclosed by the roofs

— Supernodes : a global “building”
and a global “non-building” node
used for detection

69

Classification

* Classification of a volume using a linear SVM

* Features are extracted from planar patches
enclosing the volume:
— Elevation
— Distance to the nearest ground point
— Convexity of the upper volume surface
— Scatter of point cloud in the volume
— Area and aspect ratio
— Degree of enclosure by empty space
— Fitting error

Parsing

3 ”
13 . D% PL), },
Vg ‘\t/v |
:lu-'_a ;“f,. .IF'J}] -
[Ps
A\ 4
75 A
155 A Vi Vi
2y
5 production 5 + dependency parsing

* Productions for parsing planar patches are deterministic

* Hierarchy among volumes is not deterministic - dependency
parsing

* For set of planar patches, a sequence of productions generates a
parse tree

71

Inference

* Construct a directed graph G consisting of the
volumes
* Edge weights represent:
—Hierarchy based on the area
—How likely they belong to the same class
—\Whether they are children of the supernodes
* A parse tree T is a maximum spanning tree in G

* Use Chi-Liu/Edmonds algorithm to compute
MST

Quantitative Results

9 blocks used for training (buildings and their
parses are labeled)

/8 blocks used for testing (only buildings are
labeled)

Detection results (accuracy of patch
classification): 89.3%

Parsing accuracy (3-fold cross-validation on the
9 blocks): 76.2 %

Detection Results

74

Detection Results

75

ection Results

76

Parsing Results

original point cloud and detected buildings root depth 1

Y
.

77

3D Object Detection using Bottom-
up and Top-down Descriptors

* Detect objects in large-scale 3D datasets

* Requirements:
— Precision |
— Recall
— Speed

[Patterson, Mordohai and Daniilidis, ECCV 2008] 78

Shape Descriptors

* Different descriptors provide different trade-
off between speed and accuracy

* More types of invariance => faster, less
discriminative
— E.g. spin images vs. 3D shape contexts

* Global descriptors are more accurate, but
are sensitive to occlusion (and deformation)
— Require only one comparison per target
— Need segmentation hypotheses

Approach

* Spin images for fast bottom-up detection
of regions of interest

— Objective: maximize recall
* Extended Gaussian Images (EGIs) as

global top-down descriptors to verify
hypotheses

— Objective: prune wrong hypotheses

— Side product: best alignment with most similar
model

Experiments

* Dataset: 220 million points collected from
terrestrial sensors

* 2.2 million used as training set for spin
Images
— 81,000 spin images in DBg;, 2600 positive
— 17 cars in DBgg,

Bottom-up Detection
3 ___+____.¢r"' . R ¥ DS

* Spin images of unknown scene classified as
positive or negative

* Positive spin images clustered to form hypotheses
— Minimum number required for hypothesis

82

Results

Results

84

Results

85

Precision-Recall Curve
, | | Data: 1221 cars

0.9 - * Bottom-up stage:
308 - —2200 hypotheses,
%07 f 1100 correct

06 ' * Top-down stage *:

0.5 - =905 true positives

— 74 false alarms

084 0.6 0.8
Precision — 316 missed detections

Car Detection Video

