
CS 532: 3D Computer Vision
Lecture 10

Enrique Dunn
edunn@stevens.edu
Lieb 310

1

Homework # 4 available on Canvas
Due Nov 22

2

Lecture Outline

• Meshes

• Slides by:
– S. Rusinkiewicz, T. Liu and V. Kim (Princeton University)
– Ching-Kuang Shene (Michigan Tech. Univ.)

• David M. Mount, CMSC 754: Computational
Geometry lecture notes, Department of Computer
Science, University of Maryland, Spring 2012
– Lecture 22

3

3D Polygonal Mesh
• Set of polygons representing a 2D surface embedded in 3D

4

3D Polygonal Mesh

5

3D Polygon

• Region “inside” a sequence of coplanar
points

• Points in counter-clockwise order
– Define normal

6

3D Polygonal Meshes

Why are they of interest?
• Simple, common representation
• Rendering with hardware support
• Output of many acquisition tools
• Input to many simulation/analysis tools

7

Surface Normals

8

Curvature

9

Rigid Transformations

• Compare with
implicit
representations
– level sets

10

Deformations

11

Deformations

12

Smoothing

13

Sharpen

14

Definitions

15

• A polygonal mesh consists of three kinds of
mesh elements: vertices, edges, and faces.

• The information describing the mesh elements
are mesh connectivity and mesh geometry.

• The mesh connectivity, or topology, describes
the incidence relations among mesh elements
(e.g., adjacent vertices and edges of a face, etc).

• The mesh geometry specifies the position and
other geometric characteristics of each vertex.

Definitions

• A polygonal mesh is a manifold if
– Each edge is incident to only one or two

faces, and
– The faces incident to a vertex form a closed

or an open fan.

• The orientation of a face is a cyclic
ordering of the incident vertices.

• The orientation of a pair of adjacent faces
is compatible, if the two vertices of the
single common edge are in opposite order.

• A manifold mesh is orientable if any two
adjacent faces have compatible orientation

Definitions

• Boundary edge: adjacent to exactly 1 face
• Regular edge: adjacent to exactly 2 faces
• Singular edge: adjacent to more than 2

faces
• Closed mesh: mesh with no boundary

edges

17

Another Mesh Definition…

• A set of finite number of closed polygons
– Intersection of inner polygonal areas is empty
– Intersection of 2 polygons from is either

empty, a point or an edge
– Every edge belongs to at least one polygon
– The set of all edges which belong only to one

polygon are called edges of the polygonal
mesh and are either empty or form a single
closed polygon

18

Non-Manifold Meshes

19

• Manifold Conditions:
– Each edge is incident to only one or two faces,
– The faces incident to a vertex form a closed or an

open fan.
• The following examples are non-manifold meshes!

Euler-Poincaré Characteristic

20

Euler-Poincaré Characteristic

21

Homeomorphism

22

Homeomorphism

23

Low-level Operations

• Subdivide face
• Subdivide edge
• Collapse edge
• Merge vertices
• Remove vertex

24

Subdivide Face

• How should we split current triangle?

25

Subdivide Edge

26

Collapse Edge

27

Merge Vertices

28

Polygonal Mesh Representation

Important properties of mesh representation
• Efficient traversal of topology
• Efficient use of memory
• Efficient updates

29

Possible Data Structures

• List of independent faces
• Vertex and face tables
• Adjacency lists
• Winged edge
• Half edge
• etc.

30

Independent Faces

• A.k.a triangle soup
• Each face lists vertex coordinates
– Redundant vertices
– No adjacency information

31

Vertex and Face Tables

• Each face lists vertex references
– Shared vertices
– Still no adjacency information

32

Adjacency Lists
• Store all vertex, edge and face adjacencies
– Efficient adjacency traversal
– Extra storage

requirements

33

Partial Adjacency Lists
• Can we store only some adjacency

relationships and derive others?

34

Winged Edge
• Adjacency encoded in edges
– All adjacencies in O(1) time

• Little extra storage (fixed records)
• Arbitrary polygons

35

Winged Edge

36

Winged Edge

37

Winged Edge

38

Winged Edge

39

Winged Edge

40

Left vs. Right Faces

41

Winged Edge Info

42

Winged Edge Info

43

Winged Edged Data Structure

• The winged-edge data structure has three tables:
edge table, vertex table, and face table.

• Each edge has one row in the edge table.
– Each row contains the eight pieces of information of that

edge.

• Each vertex has one entry in the vertex table.
– Each entry has a pointer to an incident edge (in the edge

table) of that vertex.

• Each face has one entry in the face table.
– Each entry has a pointer to an incident edge (in the edge

table) of that face.

44

Winged Edged Data Structure

45

Winged Edged Data Structure

46

Winged Edged Data Structure

47

• The following tetrahedron has four vertices A, B, C and
D, six edges a, b, c, d, e, f, and four faces 1, 2, 3 and 4.

Winged Edged Data Structure

48

• The following tetrahedron has four
vertices A, B, C and D, six edges a,
b, c, d, e, f, and four faces 1, 2, 3
and 4.

Winged Edged Data Structure

• The winged-edge data structure permits a program to
answer many topological inquires very efficiently.

• If (1) V, E and F are the numbers of vertices, edges, and
faces and (2) each entry in the table uses one memory
unit, the vertex table, edge, table, and face table require
V, 8E and F memory units, respectively.

49

Half Edge

• Adjacency encoded in edges
– All adjacencies in O(1) time
– Little extra storage (fixed records)
– Arbitrary polygons

• Similar to winged-edge,
except adjacency
encoded in half-edges

50

Half Edge

• Each undirected edge represented by two
directed half edges
– Unambiguously defines left and right

• Assume that there are no holes in faces

51

Half Edge

• Each vertex stores:
– its coordinates
– a pointer v.inc_edge to any directed edge that has vertex as its origin

• Each directed edge is associated with:
– a pointer to the oppositely directed edge, called its twin
– an origin and destination vertex
– two faces, one to its left and one to its right.

• We only store:
– a pointer to the origin vertex e.org (e.dest can be accessed as e.twin.org)
– a pointer to the face to the left of the edge e.left (we can access the face to the

right from the twin edge)
– pointers to the next and previous directed edges in counterclockwise order

about the incident face, e.next and e.prev, respectively

• Each face f stores a pointer to a single edge for which this face is the
incident face, f.inc_edge

52

How to Load a Shape

• From file with vertices and triangles

53

How to Load a Shape

• Add vertex coordinates
to list

54

How to Load a Shape

• Add vertex coordinates
to list

• Add half-edges
with faces

55

How to Load a Shape

56

• Add vertex coordinates
to list

• Add half-edges
with faces
– Inner half-edges

are sufficient

How to Load a Shape

57

• Add vertex coordinates
to list

• Add half-edges
with faces
– Inner half-edges

are sufficient
– Update vertex

pointers to
half-edges

How to Load a Shape

58

• Add vertex coordinates
to list

• Add half-edges
with faces
– Inner half-edges

are sufficient
– Update vertex

pointers to
half-edges

– Half-edges: pointer to next,
pointer to face

– Faces: pointer to one of the inner half-edges

How to Load a Shape

• Continue adding incrementally

59

Finding Adjacent Faces

• Check all outgoing
half edges
– V points to a half edge

HE
– ADD_FACE(HE)
– Iterate:

• X=HE.twin
• Y=X.next
• ADD_FACE(Y)
• HE:=Y

60

Collapsing an Edge

61

• Create a new vertex v
• Remove faces

Collapsing an Edge

62

• Create a new vertex v
• Remove faces
• Change twin pointers

Collapsing an Edge

63

• Create a new vertex v
• Remove faces
• Change twin pointers
• Remove edges

Collapsing an Edge

64

• Create a new vertex v
• Remove faces
• Change twin pointers
• Remove edges
• Change pointers

from half-edges to
v1 and v2

Collapsing an Edge

65

• Create a new vertex v
• Remove faces
• Change twin pointers
• Remove edges
• Change pointers

from half-edges to
v1 and v2

• Remove v1 and v2

• Pick an outgoing edge for v

