CS 532: 3D Computer Vision
Lecture 1

Enrigue Dunn
edunn@stevens.edu
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What if ...

we could turn the Internet into a camera?

facebook

YOU Tllhe 300 hrs. of video
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Computer Vision

Priors

Visual Concepts



Visual Concepts

3D Content
(This COURSE)

Geometric

Qualitative

Semantic

Quantitative

- Ground
. Vegetation
. Building




Objectives

* Approach Computer Vision from a
geometric, 3D perspective

— Negligible overlap with traditional Computer
Vision course (CS 558)

— Explain image formation, single and multi-
view geometry, structure from motion

 Introduce Computational Geometry
concepts

— Point clouds, meshes, Delaunay triangulation



Important Points

 This Is an elective course. You chose to be
here.

« Expect to work and to be challenged.

 Exams won't be based on recall. They will

be open book and you will be expected to
solve new problems.



Logistics

 Office hours: Wednesday 5-6 and by emaill

« Evaluation:
— 35 homework sets (50%)
— Quizzes and participation (10%)
— Mid-term exam (15%)
— Final exam (25%)



Textbooks

* Richard Szeliski, Computer Vision:
Algorithms and Applications, Springer,
2010

 David M. Mount, CMSC 754:
Computational Geometry lecture notes,
Department of Computer Science,
University of Maryland, Spring 2012

 Both available online



What is Computer Vision

* Why is it not image processing?



Graphics vs. Vision

13



Graphics vs. Vision
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Vision is Hard
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Vision IS Hard_ |

7§
.

V9.




Hard

lon IS

IS

V




Vision is Hard
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Vision is Hard




Vision is Hard
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Vision is Hard
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Vision is Hard

« A 2D picture may be produced by many different 3D scenes
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Vision is Hard
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Vision is Hard
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Why is Vision Hard?

IQBSS of information due to projection from 3D to

— Infinite scenes could have generated a given image

Image colors depend on surface properties,
illumination, camera response function and
Interactions such as shadows

— HVS very good at ignoring distractors

Noise

— sensor noise and nonlinearities, quantization
Lots of data

Conflicts among local and global cues
— lllusions



The Horizon

* Not all hard to explain phenomena are
unusual...
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Vanishing Points
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Why 3D Vision?

Structure from Motion
— Simultaneous Localization and Mapping

3D reconstruction
— Dense mapping ...

3D motion capture
Medical applications

Robotics and autonomous driving
— Driver assistance



3D Models




Real-Time Video-based 3D Reconstruction

Goal: real-time reconstruction of urban
environments for visualization and training

o Platform:

— 8 non-overlapping cameras
— Differential GPS
— Inertial Navigation System
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Data Collection
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Results: Chapel Hill
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3 of 11 images and corresponding depth maps
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Depth ap Fuion

Fused Depth Map

2
CIRath

Colored Point Clouds
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The World in Six Days

Building the World in Six Days

2 Viniln e Ta L B =
CVPR 2015

Paper 964



Visual Turing Test (UW
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Shan, Adams, Curless, Furukawa and Seitz (2013)
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Visual SLAM

Parallel, Real-Time VSLAM

IROS 2010




Dynamic Reconstruction




Introduction to Geometry

Based on slides by M. Pollefeys (ETH)
and D. Cappelleri (Purdue)
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Points and Lines in 2D

* A point (X, y) lies on a line (a, b, c) when:
—axtby+c=0or(a,b,c)(x,y, 1)T=0

* Use homogeneous coordinates to represent
points => add an extra coordinate

— Note that scale is unimportant for determining
incidence: k(x, y, 1) is also on the line

— Homogeneous coordinates (x;, X,, X5), but only
two degrees of freedom

— Equivalent to inhomogeneous coordinates (X, y)



Points from Lines and Vice Versa

 The intersection of two lines | and |’ is
given by: IxI’

 The line connecting two points x and X" is
given by: xxx’

l L \ l)).l‘ y l' 2 B:: = l 2 /))y \
C=AxB=|A, |x| B, |=|4,-B,—4,-B,
A ) \Bi) \dyr By~ By



ldeal Points and the Line at Infinity

Intersection of two parallel lines:
—l=(a,b,c)andl’=(a, b, )
— IxI = (b, -a, 0)

ldeal points: (X4, X5, 0)
Belong to the line at infinity | = (0, O, 1)

P2 =R3-(0, 0, 0) (projective space)

— In P2 there is no distinction between regular and
ideal points



Rotation in 2D

» Matrices are operators that transform
vectors

cos@ —sin6b

— 2D rotation matrix R=[Sin 0 coso

* |n homogeneous coordinates [g (1)



Hands-on: 2D Transformations

* How to translate a point in homogeneous
and inhomogeneous coordinates?

* How to rotate a point around the origin?

* How to rotate a point around a center
other than the origin?

_[cos@ —sinf
R_[sinH cos@




Hierarchy of 2D Transformations

transformed invariants
squares

Projective
8dof

Affine
6dof

Similarity
4dof

Euclidean
3dof
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Concurrency, collinearity,
order of contact (intersection,
tangency, inflection, etc.),
cross ratio

Parallellism, ratio of areas,
ratio of lengths on parallel
lines (e.g midpoints), linear
combinations of vectors
(centroids).

The line at infinity I,

Ratios of lengths, angles.
The circular points |,J

. ‘ lengths, areas.
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Transformation of Points and Lines

Point transformation

x'=HXx

Line transformation
I'=H'1



3D points

3D point
(X,7,Z) in R3
X = (X1>X29X3>X4)T in P’

X=(X1 X2 XS

]
1| =(x,v,Zz1)
X4’X4’X4’) wr.zl (X, =0)

projective transformation

X'=HX (4x4-1=15 dof)



Planes

3D plane Transformation
nX+n,Y+n,Z+7m, =0 X'=HX
m=H"n

X, +1, X, +1,X;+1m, X, =0
n'X=0

Euclidean representation
> T
n.X+d=0 n=(n,mn,,n,)

X =
n,=d X,
o]

(x,7,2)
=1



Planes from points

Solve tfrom X/ n=0,X,nt=0and X;n =0

T -
X, X/
X-zr 7t = () (solve as right nullspace of 7T ) X;

T T
X! X;

dr implicitly from coplanarity condition
X W) () )
x| ), (), (X)),

¥, (), (), ()
X, X)), X)), X)),

det =0

X1Dy3q = Xy Dp3y + X530y, _TX4D123 =0
= D2349_D1349D1249_D123)
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Points from planes

Solve X fromn; X =0, ;X =0and ;X =0

X =0 (solve as right nullspace of X )

Lines are complicated...




Rotations

 Rotation matrices around the 3 axes
=> \What is the inverse of a rotation matrix?

10 0
R:o=| 0 cosfl —sind
0 sin# cos 6

cosf 0 sinf |
—sinfl 0 cos#

cos/ —smnd 0
R.p=| sinf costf 0
0 0 1




Rotation Example

Yo

pg =R.p pg

|

The rotation matrix can be used to
perform arbitrary rotations on vectors

0 _ po 1
v, =Rj v,

el
D .
Pa = 0
1
cos# —smnf# 0 1 0
sinff cosfl 0 0 — 1
() () 1 1 1
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Parameterization of Rotations

e |[n 3D, the 9-element rotation matrix has 3
DOF

« Several methods exist for representing a
3D rotation

— Euler angles
— Pitch, Roll, Yaw angles
— Axis/Angle representation

— Quaternions



Euler Angles

step |:rotate by (» about Zp
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Euler Angles

step 2: rotate by # about in

=1 cg 0 sp
4 0 1 0
- —sg 0 «cg

|
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Euler Angles

step 3: rotate by 1 about 23

Cop — 8y |
:.-3 -?- -'"I!-|.I!'_| {.r-i.:}
Tz () () 1

0 |
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Euler Angles to Rotation Matrix

(post-multiply using the basic rotation matrices)

R = R:.q‘) Ry.@ Rz.w

es —86 0| c@ 0 s || cp —s¢ 0]
— S Ca () () | R § Sab Cyf ()
R B ) Y (R s O I e
CHCOCyp — S¢Sy  —CHCOSyhy — sQ( v ChSe
—SpCy SQ S Cp




Roll, Pitch, Yaw Angles

defined as a set of three angles about a fixed reference

20
Y
\ __l_;f Q@
roll
:/\"'.I
N — Yo
[ 4 \ III"- ;"-II
\ .--"I T Y
AN . pitch
A




Roll, Pitch, Yaw Angles to Rotation

Matrix

(pre-multiply using the basic rotation matrices)

R — Rz,q’) Rye RI’HJ

I ce —S¢ 0 17 co6 0 sl [ 1 0
= | s¢ ¢ U 0 1 0 0 ¢y
! 0 0 1 | | —se 0 cp 1L 0 sy

(‘@(‘9 (‘cb.‘?g.ﬁ'w — 'qunlp _qd)_qw _+_ P’ﬁ-f"qutt'r‘
— SpCo  SpSeSy o CHCyp  SpSeCy — CpSy
__‘-_,‘9 fje.qum (?Q(jw

—
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Rigid Motion

a rigid motion couples pure translation with pure rotation

» U1

00 Yo

rigid motions can be expressed as

p' =Rip +dj

A0




Homogeneous Transformation

a homogeneous transform is a matrix representation of rigid motion,

defined as
R d
n-[ 5]

where R is the 3x3 rotation matrix, and d is the 1x3 translation vector

Ny Sy Gp d

3

=

ny Sy a,fld
n, S, a, d

0O 0 O

&2

the inverse of a homogeneous transform can be expressed as

RT —-R'd
-1
=[5




Hierarchy of 3D Transformations

Projective
15dof

Affine
12dof

Similarity
7dof

Euclidean
oedof

Intersection and tangency

Parallellism of planes,
Volume ratios, centroids,
The plane at infinity 1.,

Angles, ratios of length
The absolute conic Q.

Volume

T
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