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What if …
we could turn the Internet into a camera?

How would this camera behave?

What imagery would it generate?
DistributedUncontrolled Asynchronous 130,000 Images

300 hrs. of video

Uploads 
per minute
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Visual Index of the World
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Visual Index of the World
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Applications
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Objectives 

•  Approach Computer Vision from a 
geometric, 3D perspective 
– Negligible overlap with traditional Computer 

Vision course (CS 558) 
– Explain image formation, single and multi-

view geometry, structure from motion 

•  Introduce Computational Geometry 
concepts 
– Point clouds, meshes, Delaunay triangulation 
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Important Points 

•  This is an elective course. You chose to be 
here. 

•  Expect to work and to be challenged. 

•  Exams won’t be based on recall. They will 
be open book and you will be expected to 
solve new problems. 

9 



Logistics 

•  Office hours: Wednesday 5-6 and by email 

•  Evaluation: 
– 5 homework sets (50%) 

– Quizzes and participation (10%) 

– Mid-term exam (15%) 

– Final exam (25%) 
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Textbooks 

•  Richard Szeliski, Computer Vision: 
Algorithms and Applications, Springer, 
2010 

•  David M. Mount, CMSC 754: 
Computational Geometry lecture notes, 
Department of Computer Science, 
University of Maryland, Spring 2012 

•  Both available online 
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What is Computer Vision 

•  Why is it not image processing? 
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Graphics vs. Vision 

 
Shape 
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Vision is Hard 
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Vision is Hard 
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Vision is Hard 
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Vision is Hard 
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Vision is Hard 
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Vision is Hard 
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Vision is Hard 
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Vision is Hard 

•  A 2D picture may be produced by many different 3D scenes 
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Vision is Hard 
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Vision is Hard 
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Vision is Hard 
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Vision is Hard 
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Why is Vision Hard? 

•  Loss of information due to projection from 3D to 
2D 
–  Infinite scenes could have generated a given image 

•  Image colors depend on surface properties, 
illumination, camera response function and 
interactions such as shadows 
–  HVS very good at ignoring distractors 

•  Noise  
–  sensor noise and nonlinearities, quantization 

•  Lots of data 
•  Conflicts among local and global cues 

–  Illusions 
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The Horizon 
•  Not all hard to explain phenomena are 

unusual… 
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Vanishing Points 
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Why 3D Vision? 

•  Structure from Motion 
– Simultaneous Localization and Mapping 

•  3D reconstruction 
– Dense mapping … 

•  3D motion capture 

•  Medical applications 

•  Robotics and autonomous driving 
– Driver assistance 
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3D Models 
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Real-Time Video-based 3D Reconstruction 

•  Goal: real-time reconstruction of urban 
environments for visualization and training 

•  Platform:  
–  8 non-overlapping cameras 

–  Differential GPS 
–  Inertial Navigation System 
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Data Collection 
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Results: Chapel Hill 



Depth Map Estimation 

3 of 11 images and corresponding depth maps 
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Raw Depth Map
 Fused Depth Map


Depth Map Fusion 

Colored Point Clouds
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Rome in a Day 
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The World in Six Days 
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Visual Turing Test (UW) 
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Shan, Adams, Curless, Furukawa and Seitz (2013) 
 



Visual SLAM 
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Dynamic Reconstruction
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Introduction to Geometry 

Based on slides by M. Pollefeys (ETH) 
and D. Cappelleri (Purdue) 
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Points and Lines in 2D 

•  A point (x, y) lies on a line (a, b, c) when: 
–  ax+by+c = 0 or (a, b, c) (x, y, 1) T = 0 

•  Use homogeneous coordinates to represent 
points => add an extra coordinate 
– Note that scale is unimportant for determining 

incidence: k(x, y, 1) is also on the line 

– Homogeneous coordinates (x1, x2, x3), but only 
two degrees of freedom 

– Equivalent to inhomogeneous coordinates (x, y) 
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Points from Lines and Vice Versa 

•  The intersection of two lines l and l’ is 
given by: l×l’ 

•  The line connecting two points x and x’ is 
given by: x×x’ 
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Ideal Points and the Line at Infinity 

•  Intersection of two parallel lines:  
–  l = (a, b, c) and l’ = (a, b, c’) 
–  l×l’ = (b, -a, 0) 

•  Ideal points: (x1, x2, 0) 
•  Belong to the line at infinity l = (0, 0, 1) 

•  P2 = R3-(0, 0, 0) (projective space) 
–  In P2 there is no distinction between regular and 

ideal points 

45 



Rotation in 2D 
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Hands-on: 2D Transformations 

•  How to translate a point in homogeneous 
and inhomogeneous coordinates? 

•  How to rotate a point around the origin? 

•  How to rotate a point around a center 
other than the origin? 
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Hierarchy of 2D Transformations 
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Transformation of Points and Lines 

Line transformation 
ll' -TH=

xx' H=
Point transformation 
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3D points 
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Planes 
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0ππππ 44332211 =+++ XXXX

0Xπ =T

3D plane 

0X~.n =+d ( )T321 π,π,πn = ( )TZYX ,,X~ =
14 =Xd=4π

Euclidean representation 

n/d

XX' H=
ππ' -TH=

Transformation 
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Planes from points 
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Points from planes 
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Lines are complicated… 



Rotations 

•  Rotation matrices around the 3 axes 

=> What is the inverse of a rotation matrix? 
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Rotation Example 
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Parameterization of Rotations 

•  In 3D, the 9-element rotation matrix has 3 
DOF 

•  Several methods exist for representing a 
3D rotation 
– Euler angles 

– Pitch, Roll, Yaw angles 

– Axis/Angle representation 

– Quaternions 
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Euler Angles 
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Euler Angles 
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Euler Angles 

59 



Euler Angles to Rotation Matrix 
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Roll, Pitch, Yaw Angles 

61 



Roll, Pitch, Yaw Angles to Rotation 
Matrix 
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Rigid Motion 
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Homogeneous Transformation 
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Hierarchy of 3D Transformations 
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